Transfer Function Identification with Few-Shots Learning and a Genetic Algorithm Using Proposed Signal-Signature

Author:

Rivera Martín MontesORCID,Aguilar Justo Marving Omar,Perez-Hernández Misael

Abstract

Mathematical models help simulate system dynamics and identifying parameters impacts prediction and control. Various techniques exist for parameter estimation. The DC motor is commonly used for position and speed control due to its ease of use and precision, especially in low-power applications. However, accurately parameterizing with low error can be challenging. Few-shot learning, which involves identifying relevant parameters from a small amount of data, has gained popularity and is particularly useful when working with limited datasets. This work presents a new technique for identifying system transfer functions using few-shot learning. It assigns a unique signature value to each system and has been successfully tested on 1500 randomly generated systems. The approach reduced the search space significantly, enabling successful identification of all systems using a genetic algorithm. R-square values ranged from 0.99 to 1.0, with only 5% of samples falling out of range.

Publisher

Editorial Académica Dragón Azteca

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3