MONITORING FIRES IN THE TERRITORY OF FOREST FUND OF REGIONS OF THE RUSSIAN FEDERATION

Author:

Zinoveva Irina,Medvedev P.1

Affiliation:

1. Voronezh State University of Forestry and Technologies named after G.F. Morozov

Abstract

This work is devoted to the consideration of the problems of reducing forest resources, which is largely associated with fires that occur in hard-to-reach areas and in areas with increased recreational load. In this regard, the creation of an effective fire detection system using various types of monitoring – ground, aviation, and space – is of particular relevance and importance. An important monitoring task is not only monitoring the fire situation, but also assessing the effects of fires. To determine the location of forest fires on the lands of the forest fund and other categories of lands, as well as to collect and store data, the Avialesohrana Federal State Budgetary Institution uses remote monitoring of the ISDM-Rosleskhoz system, which helps to quickly detect fires using satellites, record them, and compile information on foci and give them an assessment. According to the ISDM-Rosleskhoz data, a comparative analysis of the dynamics of the number of forest fires in the regions of the Russian Federation for 2017-2019 was carried out, as well as an analysis of the area of forest land covered by fires in 2015-2019, the results of which revealed a growing trend in the number of fires and their increase area. As a result, it was concluded that it is necessary to improve the system of remote monitoring of forest fires with the aim of preventing, timely detecting and preventing spread.

Publisher

Voronezh State University of Forestry and Technologies named after G.F. Morozov

Reference6 articles.

1. Голубева, Е.И. Инновационные технологии в мониторинге лесных пожаров / Е.И. Голубева, С.Н. Жаринов // Вестник российской академии естественных наук. – 2014. – Т.14, №2. – С. 67-72, Golubeva, E.I. Innovacionnye tehnologii v monitoringe lesnyh pozharov / E.I. Golubeva, S.N. Zharinov // Vestnik rossiyskoy akademii estestvennyh nauk. – 2014. – T.14, №2. – S. 67-72

2. Единая межведомственная информационно-статистическая система (ЕМИСС): сайт / Федеральная служба государственной статистики. – URL: https://www.fedstat.ru/organizations/ (дата обращения 08.01.2020). – Текст электронный., Edinaya mezhvedomstvennaya informacionno-statisticheskaya sistema (EMISS): sayt / Federal'naya sluzhba gosudarstvennoy statistiki. – URL: https://www.fedstat.ru/organizations/ (data obrascheniya 08.01.2020). – Tekst elektronnyy.

3. Информационная система дистанционного мониторинга Федерального агентства лесного хозяйства. Блок мониторинга пожарной опасности. – URL: https://nffc.aviales.ru/main_pages/index.shtml (дата обращения 09.01.2020). – Текст электронный., Informacionnaya sistema distancionnogo monitoringa Federal'nogo agentstva lesnogo hozyaystva. Blok monitoringa pozharnoy opasnosti. – URL: https://nffc.aviales.ru/main_pages/index.shtml (data obrascheniya 09.01.2020). – Tekst elektronnyy.

4. Лесной Кодекс Российской Федерации: принят Государственной думой 8 ноября 2006 года: одобрен Советом Федерации 24 ноября 2006 года. – URL: http://www.consultant.ru/document/cons_doc_LAW_64299/ (дата обращения 08.01.2020). – Текст электронный., Lesnoy Kodeks Rossiyskoy Federacii: prinyat Gosudarstvennoy dumoy 8 noyabrya 2006 goda: odobren Sovetom Federacii 24 noyabrya 2006 goda. – URL: http://www.consultant.ru/document/cons_doc_LAW_64299/ (data obrascheniya 08.01.2020). – Tekst elektronnyy.

5. Srinivas, K. Fog Computing and Deep CNN Based Efficient Approach to Early Forest Fire Detection with Unmanned Aerial Vehicles / К. Srinivas, M. Dua // Lecture Notes in Networks and Systems – 2020. – Volume 98. – Pages 646-652. – URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-85075056956&origin=resultslist&sort=plf-f&src=s&st1=+forest+fire+monitoring&st2=&sid=188d7df55a014120dba62c1c222a73dd&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28+forest+fire+monitoring%29&relpos=12&citeCnt=0&searchTerm= (дата обращения 10.01.2020). – Текст электронный., Srinivas, K. Fog Computing and Deep CNN Based Efficient Approach to Early Forest Fire Detection with Unmanned Aerial Vehicles / K. Srinivas, M. Dua // Lecture Notes in Networks and Systems – 2020. – Volume 98. – Pages 646-652. – URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-85075056956&origin=resultslist&sort=plf-f&src=s&st1=+forest+fire+monitoring&st2=&sid=188d7df55a014120dba62c1c222a73dd&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28+forest+fire+monitoring%29&relpos=12&citeCnt=0&searchTerm= (data obrascheniya 10.01.2020). – Tekst elektronnyy.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3