Statistical Optimization of As(V) Adsorption Parameters onto Epichlorohydrin/Fe3O4 Crosslinked Chitosan Derivative Nanocomposite using Box-Behnken Design

Author:

Nagarajan Vijayanand,Ganesan Raja,Govindan Srinivasan,Govind Prabha

Abstract

In this study, Box-Behnken design (BBD) in response surface methodology (RSM) was employed to optimize As(V) removal from an aqueous solution onto synthesized crosslinked carboxymethylchitosan-epichlorohydrin/Fe3O4 nanaocomposite. The factors like solution pH, adsorbent dose, contact time and temperature were optimized by the method which shows high correlation coefficient (R2 = 0.9406), and a predictive quadratic polynomial model equation. The adequacy of the model and parameters were evaluated by analysis of variance (ANOVA) with their significant factors of Fischer’s F-test (p < 0.05). Seven significant parameters with interaction effects in the experiment with p-value < 0.0001 was observed, having a maximum removal efficiency of As(V) is 95.1%. Optimal conditions of dosage, pH, temperature, initial ion concentration and contact time in the process were found to be 0.7 g, pH 6.5, 308K, 10 mg/L and 60 min respectively. Langmuir isotherm model fitted better than the Freundlich model having a maximum adsorption capacity of 28.99 mg/g, a high regression value of 0.9988, least chi-square value of 0.1781. The process was found to follow monolayer adsorption and pseudo-second-order kinetics. Thermodynamic parameters indicate the process is spontaneous, endothermic and physisorption in nature. Successful regeneration of the adsorbent implies its applicability to the removal of arsenic from real life wastewater.

Publisher

Slovenian Chemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3