A Review on Recent Progression of Modifications on Titania Morphology and its Photocatalytic Performance

Author:

Farhana Jaafar Nur,Farhana Jaafar Nur,Khairuddean Melati,Nordin Norazzizi

Abstract

Titanium dioxide (TiO2) has been broadly used as a photocatalyst because it has good stability and performance for degradation of pollutants. On the other hand, its efficiency as photocatalyst is limited since it can only be excited under UV-light radiation and has a rapid electron-hole recombination that occurs during the photodegradation. There are many studies focusing on adjusting the synthesis methods, addition of dopants and modifying the TiO2 structure to enhance its photocatalytic performance. Among them, synthesis of TiO2 as porous nanoparticles as one of the strategies in modifying the TiO2 structure has gained attention due to its benefits for better adsorption and accessibility of various pollutants onto the reactive site of catalyst, thus enhancing the photocatalytic performance. In this review, we recapitulated on modifications of synthesis methods for TiO2 and their effect on the structure along with the photocatalytic performance. Recent progress for TiO2 in terms of synthesis approaches, effect of dopants, modified structures, and applications are also briefly discussed in this review.

Publisher

Slovenian Chemical Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3