Development of QSAR Model Based on Monte Carlo Optimization for Predicting GABAA Receptor Binding of Newly Emerging Benzodiazepines

Author:

Antović Aleksandra,Karadžić Radovan,Živković Jelena V.,Veselinović Aleksandar M.

Abstract

The rising prevalence and appeal of designer benzodiazepines (DBZDs) pose a significant public health concern. To evaluate this threat, the biological activity/potency of DBZDs was examined through in silico studies. To gain a deeper understanding of their pharmacology, we employed the Monte Carlo optimization conformation-independent method as a tool for developing QSAR models. These models were built using optimal molecular descriptors derived from both SMILES notation and molecular graph representations. The resulting QSAR model demonstrated robustness and a high degree of predictability, proving to be very reliable. The newly discovered molecular fragments used in the computeraided design of the new compounds were believed to have caused the increase and decrease of the studied activity. Molecular docking studies were used to make the final assessment of the designed inhibitors and excellent correlation with the results of QSAR modeling was observed. This discovery paves the way for the swift prediction of binding activity for emerging benzodiazepines, offering a faster and more cost-effective alternative to traditional in vitro/in vivo analyses.

Publisher

Slovenian Chemical Society

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3