The Use of Yeast Saccharomyces Cerevisiae as a Biorecognition element in the Development of a Model Impedimetric Biosensor for Caffeine Detection

Author:

Štukovnik Zala,Godec Regina Fuchs,Bren Urban

Abstract

In the present study, an electrochemical-impedimetric biosensor using Saccharomyces cerevisiae as an effective biorecognition element was designed to detect caffeine. The presented biosensor consists of a previously developed stainless steel electrochemical cell constructed as a three-electrode system in the RCW side-by-side configuration. The electrochemical stability of the sensing electrode was evaluated by measuring the open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) was applied to determine the impedimetric response of the biosensor with Saccharomyces cerevisiae cells attached to the working electrode (WE) in the absence (0.9% NaCl) and presence (10 mg/mL in 0.9% NaCl) of caffeine. Moreover, the limit of detection (LOD) was determined. In this way, a new approach in biosensor development has been established, which involves assembling a low-cost and disposable electrochemical system to detect alkaloids such as caffeine. The developed biosensor represents a good candidate for detecting caffeine in beverages, foods, and drugs with the merits of time-saving, robustness, low cost, and low detection limit.

Publisher

Slovenian Chemical Society

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3