Evaluation and Comparison of Ophthalmic Scientific Abstracts and References by Current Artificial Intelligence Chatbots

Author:

Hua Hong-Uyen1,Kaakour Abdul-Hadi1,Rachitskaya Aleksandra1,Srivastava Sunil1,Sharma Sumit1,Mammo Danny A.1

Affiliation:

1. Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio

Abstract

ImportanceLanguage-learning model–based artificial intelligence (AI) chatbots are growing in popularity and have significant implications for both patient education and academia. Drawbacks of using AI chatbots in generating scientific abstracts and reference lists, including inaccurate content coming from hallucinations (ie, AI-generated output that deviates from its training data), have not been fully explored.ObjectiveTo evaluate and compare the quality of ophthalmic scientific abstracts and references generated by earlier and updated versions of a popular AI chatbot.Design, Setting, and ParticipantsThis cross-sectional comparative study used 2 versions of an AI chatbot to generate scientific abstracts and 10 references for clinical research questions across 7 ophthalmology subspecialties. The abstracts were graded by 2 authors using modified DISCERN criteria and performance evaluation scores.Main Outcome and MeasuresScores for the chatbot-generated abstracts were compared using the t test. Abstracts were also evaluated by 2 AI output detectors. A hallucination rate for unverifiable references generated by the earlier and updated versions of the chatbot was calculated and compared.ResultsThe mean modified AI-DISCERN scores for the chatbot-generated abstracts were 35.9 and 38.1 (maximum of 50) for the earlier and updated versions, respectively (P = .30). Using the 2 AI output detectors, the mean fake scores (with a score of 100% meaning generated by AI) for the earlier and updated chatbot-generated abstracts were 65.4% and 10.8%, respectively (P = .01), for one detector and were 69.5% and 42.7% (P = .17) for the second detector. The mean hallucination rates for nonverifiable references generated by the earlier and updated versions were 33% and 29% (P = .74).Conclusions and RelevanceBoth versions of the chatbot generated average-quality abstracts. There was a high hallucination rate of generating fake references, and caution should be used when using these AI resources for health education or academic purposes.

Publisher

American Medical Association (AMA)

Subject

Ophthalmology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3