Outcomes of Adversarial Attacks on Deep Learning Models for Ophthalmology Imaging Domains
Author:
Affiliation:
1. Aerospace Medical Center, Department of Ophthalmology, Republic of Korea Air Force, Cheongju, South Korea
2. Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
Publisher
American Medical Association (AMA)
Subject
Ophthalmology
Link
https://jamanetwork.com/journals/jamaophthalmology/articlepdf/2771167/jamaophthalmology_yoo_2020_ld_200002_1604337593.99128.pdf
Reference6 articles.
1. Adversarial attacks on medical machine learning.;Finlayson;Science,2019
2. Reproduction study using public data of: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.;Voets;PLoS One,2019
3. Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naïve proliferative diabetic retinopathy.;Nagasawa;Int Ophthalmol,2019
4. Identifying medical diagnoses and treatable diseases by image-based deep learning.;Kermany;Cell,2018
5. Adversarial attacks and defenses in deep learning.;Ren;Eng,2020
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Privacy preserving technology in ophthalmology;Current Opinion in Ophthalmology;2024-08-27
2. A feasibility study on the adoption of a generative denoising diffusion model for the synthesis of fundus photographs using a small dataset;Discover Applied Sciences;2024-04-03
3. An ensemble deep learning diagnostic system for determining Clinical Activity Scores in thyroid-associated ophthalmopathy: integrating multi-view multimodal images from anterior segment slit-lamp photographs and facial images;Frontiers in Endocrinology;2024-04-02
4. Making Domain Specific Adversarial Attacks for Retinal Fundus Images;Communications in Computer and Information Science;2024
5. A Comprehensive Review and Analysis of Deep Learning-Based Medical Image Adversarial Attack and Defense;Mathematics;2023-10-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3