Vision-Language Models for Feature Detection of Macular Diseases on Optical Coherence Tomography

Author:

Antaki Fares123,Chopra Reena124,Keane Pearse A.124

Affiliation:

1. Institute of Ophthalmology, University College London, London, United Kingdom

2. Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom

3. The Centre Hospitalier de l’Université de Montréal School of Artificial Intelligence in Healthcare, Montreal, Quebec, Canada

4. National Institute for Health and Care Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust, London, United Kingdom

Abstract

ImportanceVision-language models (VLMs) are a novel artificial intelligence technology capable of processing image and text inputs. While demonstrating strong generalist capabilities, their performance in ophthalmology has not been extensively studied.ObjectiveTo assess the performance of the Gemini Pro VLM in expert-level tasks for macular diseases from optical coherence tomography (OCT) scans.Design, Setting, and ParticipantsThis was a cross-sectional diagnostic accuracy study evaluating a generalist VLM on ophthalmology-specific tasks using the open-source Optical Coherence Tomography Image Database. The dataset included OCT B-scans from 50 unique patients: healthy individuals and those with macular hole, diabetic macular edema, central serous chorioretinopathy, and age-related macular degeneration. Each OCT scan was labeled for 10 key pathological features, referral recommendations, and treatments. The images were captured using a Cirrus high definition OCT machine (Carl Zeiss Meditec) at Sankara Nethralaya Eye Hospital, Chennai, India, and the dataset was published in December 2018. Image acquisition dates were not specified.ExposuresGemini Pro, using a standard prompt to extract structured responses on December 15, 2023.Main Outcomes and MeasuresThe primary outcome was model responses compared against expert labels, calculating F1 scores for each pathological feature. Secondary outcomes included accuracy in diagnosis, referral urgency, and treatment recommendation. The model’s internal concordance was evaluated by measuring the alignment between referral and treatment recommendations, independent of diagnostic accuracy.ResultsThe mean F1 score was 10.7% (95% CI, 2.4-19.2). Measurable F1 scores were obtained for macular hole (36.4%; 95% CI, 0-71.4), pigment epithelial detachment (26.1%; 95% CI, 0-46.2), subretinal hyperreflective material (24.0%; 95% CI, 0-45.2), and subretinal fluid (20.0%; 95% CI, 0-45.5). A correct diagnosis was achieved in 17 of 50 cases (34%; 95% CI, 22-48). Referral recommendations varied: 28 of 50 were correct (56%; 95% CI, 42-70), 10 of 50 were overcautious (20%; 95% CI, 10-32), and 12 of 50 were undercautious (24%; 95% CI, 12-36). Referral and treatment concordance were very high, with 48 of 50 (96%; 95 % CI, 90-100) and 48 of 49 (98%; 95% CI, 94-100) correct answers, respectively.Conclusions and RelevanceIn this study, a generalist VLM demonstrated limited vision capabilities for feature detection and management of macular disease. However, it showed low self-contradiction, suggesting strong language capabilities. As VLMs continue to improve, validating their performance on large benchmarking datasets will help ascertain their potential in ophthalmology.

Publisher

American Medical Association (AMA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3