Neurologic Dysfunction Assessment in Parkinson Disease Based on Fundus Photographs Using Deep Learning

Author:

Ahn Sangil1,Shin Jitae1,Song Su Jeong2,Yoon Won Tae3,Sagong Min4,Jeong Areum4,Kim Joon Hyung56,Yu Hyeong Gon67

Affiliation:

1. Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea

2. Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

3. Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

4. Department of Ophthalmology, Yeungnam Eye Center, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, Republic of Korea

5. Department of Ophthalmology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea

6. Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea

7. Sky Eye Clinic, Seoul, Republic of Korea

Abstract

ImportanceUntil now, other than complex neurologic tests, there have been no readily accessible and reliable indicators of neurologic dysfunction among patients with Parkinson disease (PD). This study was conducted to determine the role of fundus photography as a noninvasive and readily available tool for assessing neurologic dysfunction among patients with PD using deep learning methods.ObjectiveTo develop an algorithm that can predict Hoehn and Yahr (H-Y) scale and Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) score using fundus photography among patients with PD.Design, Settings, and ParticipantsThis was a prospective decision analytical model conducted at a single tertiary-care hospital. The fundus photographs of participants with PD and participants with non-PD atypical motor abnormalities who visited the neurology department of Kangbuk Samsung Hospital from October 7, 2020, to April 30, 2021, were analyzed in this study. A convolutional neural network was developed to predict both the H-Y scale and UPDRS-III score based on fundus photography findings and participants’ demographic characteristics.Main Outcomes and MeasuresThe area under the receiver operating characteristic curve (AUROC) was calculated for sensitivity and specificity analyses for both the internal and external validation data sets.ResultsA total of 615 participants were included in the study: 266 had PD (43.3%; mean [SD] age, 70.8 [8.3] years; 134 male individuals [50.4%]), and 349 had non-PD atypical motor abnormalities (56.7%; mean [SD] age, 70.7 [7.9] years; 236 female individuals [67.6%]). For the internal validation data set, the sensitivity was 83.23% (95% CI, 82.07%-84.38%) and 82.61% (95% CI, 81.38%-83.83%) for the H-Y scale and UPDRS-III score, respectively. The specificity was 66.81% (95% CI, 64.97%-68.65%) and 65.75% (95% CI, 62.56%-68.94%) for the H-Y scale and UPDRS-III score, respectively. For the external validation data set, the sensitivity and specificity were 70.73% (95% CI, 66.30%-75.16%) and 66.66% (95% CI, 50.76%-82.25%), respectively. Lastly, the calculated AUROC and accuracy were 0.67 (95% CI, 0.55-0.79) and 70.45% (95% CI, 66.85%-74.04%), respectively.Conclusions and RelevanceThis decision analytical model reveals amalgamative insights into the neurologic dysfunction among PD patients by providing information on how to apply a deep learning method to evaluate the association between the retina and brain. Study data may help clarify recent research findings regarding dopamine pathologic cascades between the retina and brain among patients with PD; however, further research is needed to expand the clinical implication of this algorithm.

Publisher

American Medical Association (AMA)

Subject

Ophthalmology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3