Association of Disparities in Family History and Family Cancer History in the Electronic Health Record With Sex, Race, Hispanic or Latino Ethnicity, and Language Preference in 2 Large US Health Care Systems

Author:

Chavez-Yenter Daniel12,Goodman Melody S.3,Chen Yuyu3,Chu Xiangying3,Bradshaw Richard L.45,Lorenz Chambers Rachelle6,Chan Priscilla A.6,Daly Brianne M.1,Flynn Michael5,Gammon Amanda1,Hess Rachel78,Kessler Cecelia1,Kohlmann Wendy K.1,Mann Devin M.9,Monahan Rachel69,Peel Sara1,Kawamoto Kensaku4,Del Fiol Guilherme4,Sigireddi Meenakshi6,Buys Saundra S.18,Ginsburg Ophira10,Kaphingst Kimberly A.12

Affiliation:

1. Huntsman Cancer Institute, University of Utah, Salt Lake City

2. Department of Communication, University of Utah, Salt Lake City

3. School of Global Public Health, New York University, New York, New York

4. Department of Biomedical Informatics, University of Utah, Salt Lake City

5. School of Medicine, University of Utah Health, Salt Lake City, Utah

6. Perlmutter Cancer Center, NYU Langone Health, New York, New York

7. Department of Population Health Sciences, University of Utah, Salt Lake City

8. Department of Internal Medicine, University of Utah, Salt Lake City

9. Department of Population Health, New York University Grossman School of Medicine, New York University, New York, New York

10. Center for Global Health, National Cancer Institute, Rockville, Maryland

Abstract

ImportanceClinical decision support (CDS) algorithms are increasingly being implemented in health care systems to identify patients for specialty care. However, systematic differences in missingness of electronic health record (EHR) data may lead to disparities in identification by CDS algorithms.ObjectiveTo examine the availability and comprehensiveness of cancer family history information (FHI) in patients’ EHRs by sex, race, Hispanic or Latino ethnicity, and language preference in 2 large health care systems in 2021.Design, Setting, and ParticipantsThis retrospective EHR quality improvement study used EHR data from 2 health care systems: University of Utah Health (UHealth) and NYU Langone Health (NYULH). Participants included patients aged 25 to 60 years who had a primary care appointment in the previous 3 years. Data were collected or abstracted from the EHR from December 10, 2020, to October 31, 2021, and analyzed from June 15 to October 31, 2021.ExposuresPrior collection of cancer FHI in primary care settings.Main Outcomes and MeasuresAvailability was defined as having any FHI and any cancer FHI in the EHR and was examined at the patient level. Comprehensiveness was defined as whether a cancer family history observation in the EHR specified the type of cancer diagnosed in a family member, the relationship of the family member to the patient, and the age at onset for the family member and was examined at the observation level.ResultsAmong 144 484 patients in the UHealth system, 53.6% were women; 74.4% were non-Hispanic or non-Latino and 67.6% were White; and 83.0% had an English language preference. Among 377 621 patients in the NYULH system, 55.3% were women; 63.2% were non-Hispanic or non-Latino, and 55.3% were White; and 89.9% had an English language preference. Patients from historically medically undeserved groups—specifically, Black vs White patients (UHealth: 17.3% [95% CI, 16.1%-18.6%] vs 42.8% [95% CI, 42.5%-43.1%]; NYULH: 24.4% [95% CI, 24.0%-24.8%] vs 33.8% [95% CI, 33.6%-34.0%]), Hispanic or Latino vs non-Hispanic or non-Latino patients (UHealth: 27.2% [95% CI, 26.5%-27.8%] vs 40.2% [95% CI, 39.9%-40.5%]; NYULH: 24.4% [95% CI, 24.1%-24.7%] vs 31.6% [95% CI, 31.4%-31.8%]), Spanish-speaking vs English-speaking patients (UHealth: 18.4% [95% CI, 17.2%-19.1%] vs 40.0% [95% CI, 39.7%-40.3%]; NYULH: 15.1% [95% CI, 14.6%-15.6%] vs 31.1% [95% CI, 30.9%-31.2%), and men vs women (UHealth: 30.8% [95% CI, 30.4%-31.2%] vs 43.0% [95% CI, 42.6%-43.3%]; NYULH: 23.1% [95% CI, 22.9%-23.3%] vs 34.9% [95% CI, 34.7%-35.1%])—had significantly lower availability and comprehensiveness of cancer FHI (P < .001).Conclusions and RelevanceThese findings suggest that systematic differences in the availability and comprehensiveness of FHI in the EHR may introduce informative presence bias as inputs to CDS algorithms. The observed differences may also exacerbate disparities for medically underserved groups. System-, clinician-, and patient-level efforts are needed to improve the collection of FHI.

Publisher

American Medical Association (AMA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3