Recalibration of a Deep Learning Model for Low-Dose Computed Tomographic Images to Inform Lung Cancer Screening Intervals

Author:

Landy Rebecca1,Wang Vivian L.1,Baldwin David R.2,Pinsky Paul F.3,Cheung Li C.1,Castle Philip E.13,Skarzynski Martin1,Robbins Hilary A.4,Katki Hormuzd A.1

Affiliation:

1. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland

2. School of Medicine, Nottingham University Hospitals and the University of Nottingham, Nottingham, United Kingdom

3. Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland

4. Genomic Epidemiology Group, International Agency for Research on Cancer, Lyon, France

Abstract

ImportanceAnnual low-dose computed tomographic (LDCT) screening reduces lung cancer mortality, but harms could be reduced and cost-effectiveness improved by reusing the LDCT image in conjunction with deep learning or statistical models to identify low-risk individuals for biennial screening.ObjectiveTo identify low-risk individuals in the National Lung Screening Trial (NLST) and estimate, had they been assigned a biennial screening, how many lung cancers would have been delayed 1 year in diagnosis.Design, Setting, and ParticipantsThis diagnostic study included participants with a presumed nonmalignant lung nodule in the NLST between January 1, 2002, and December 31, 2004, with follow-up completed on December 31, 2009. Data were analyzed for this study from September 11, 2019, to March 15, 2022.ExposuresAn externally validated deep learning algorithm that predicts malignancy in current lung nodules using LDCT images (Lung Cancer Prediction Convolutional Neural Network [LCP-CNN]; Optellum Ltd) was recalibrated to predict 1-year lung cancer detection by LDCT for presumed nonmalignant nodules. Individuals with presumed nonmalignant lung nodules were hypothetically assigned annual vs biennial screening based on the recalibrated LCP-CNN model, Lung Cancer Risk Assessment Tool (LCRAT + CT [a statistical model combining individual risk factors and LDCT image features]), and the American College of Radiology recommendations for lung nodules, version 1.1 (Lung-RADS).Main Outcomes and MeasuresPrimary outcomes included model prediction performance, the absolute risk of a 1-year delay in cancer diagnosis, and the proportion of people without lung cancer assigned a biennial screening interval vs the proportion of cancer diagnoses delayed.ResultsThe study included 10 831 LDCT images from patients with presumed nonmalignant lung nodules (58.7% men; mean [SD] age, 61.9 [5.0] years), of whom 195 were diagnosed with lung cancer from the subsequent screen. The recalibrated LCP-CNN had substantially higher area under the curve (0.87) than LCRAT + CT (0.79) or Lung-RADS (0.69) to predict 1-year lung cancer risk (P < .001). If 66% of screens with nodules were assigned to biennial screening, the absolute risk of a 1-year delay in cancer diagnosis would have been lower for recalibrated LCP-CNN (0.28%) than LCRAT + CT (0.60%; P = .001) or Lung-RADS (0.97%; P < .001). To delay only 10% of cancer diagnoses at 1 year, more people would have been safely assigned biennial screening under LCP-CNN than LCRAT + CT (66.4% vs 40.3%; P < .001).Conclusions and RelevanceIn this diagnostic study evaluating models of lung cancer risk, a recalibrated deep learning algorithm was most predictive of 1-year lung cancer risk and had least risk of 1-year delay in cancer diagnosis among people assigned biennial screening. Deep learning algorithms could prioritize people for workup of suspicious nodules and decrease screening intensity for people with low-risk nodules, which may be vital for implementation in health care systems.

Publisher

American Medical Association (AMA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3