Cerebral Cortical Surface Structure and Neural Activation Pattern Among Adolescent Football Players

Author:

Zuidema Taylor R.12,Hou Jiancheng13,Kercher Kyle A.1,Recht Grace O.1,Sweeney Sage H.1,Chenchaiah Nishant1,Cheng Hu24,Steinfeldt Jesse A.5,Kawata Keisuke126

Affiliation:

1. Department of Kinesiology, Indiana University School of Public Health, Bloomington

2. Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington

3. Research Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou, Fujian, China

4. Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, Bloomington

5. Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington

6. Department of Pediatrics, Indiana University School of Medicine, Indianapolis

Abstract

ImportanceRecurring exposure to head impacts in American football has garnered public and scientific attention, yet neurobiological associations in adolescent football players remain unclear.ObjectiveTo examine cortical structure and neurophysiological characteristics in adolescent football players.Design, Setting, and ParticipantsThis cohort study included adolescent football players and control athletes (swimming, cross country, and tennis) from 5 high school athletic programs, who were matched with age, sex (male), and school. Neuroimaging assessments were conducted May to July of the 2021 and 2022 seasons. Data were analyzed from February to November 2023.ExposurePlaying tackle football or noncontact sports.Main Outcomes and MeasuresStructural magnetic resonance imaging (MRI) data were analyzed for cortical thickness, sulcal depth, and gyrification, and cortical surface-based resting state (RS)–functional MRI analyses examined the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and RS-functional connectivity (RS-FC).ResultsTwo-hundred seventy-five male participants (205 football players; mean [SD] age, 15.8 [1.2] years; 5 Asian [2.4%], 8 Black or African American [3.9%], and 189 White [92.2%]; 70 control participants; mean [SD] age 15.8 [1.2] years, 4 Asian [5.7], 1 Black or African American [1.4%], and 64 White [91.5%]) were included in this study. Relative to the control group, the football group showed significant cortical thinning, especially in fronto-occipital regions (eg, right precentral gyrus: t = −2.24; P = .01; left superior frontal gyrus: −2.42; P = .002). Elevated cortical thickness in football players was observed in the anterior and posterior cingulate cortex (eg, left posterior cingulate cortex: t = 2.28; P = .01; right caudal anterior cingulate cortex 3.01; P = .001). The football group had greater and deeper sulcal depth than the control groups in the cingulate cortex, precuneus, and precentral gyrus (eg, right inferior parietal lobule: t = 2.20; P = .004; right caudal anterior cingulate cortex: 4.30; P < .001). Significantly lower ALFF was detected in the frontal lobe and cingulate cortex of the football group (t = −3.66 to −4.92; P < .01), whereas elevated ALFF was observed in the occipital regions (calcarine and lingual gyrus, t = 3.20; P < .01). Similar to ALFF, football players exhibited lower ReHo in the precentral gyrus and medial aspects of the brain, such as precuneus, insula, and cingulum, whereas elevated ReHo was clustered in the occipitotemporal regions (t = 3.17; P < .001; to 4.32; P < .01). There was no group difference in RS-FC measures.Conclusions and RelevanceIn this study of adolescent athletes, there was evidence of discernible structural and physiological differences in the brains of adolescent football players compared with their noncontact controls. Many of the affected brain regions were associated with mental health well-being.

Publisher

American Medical Association (AMA)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3