Recognition of Genetic Conditions After Learning With Images Created Using Generative Artificial Intelligence

Author:

Waikel Rebekah L.1,Othman Amna A.1,Patel Tanviben1,Ledgister Hanchard Suzanna1,Hu Ping1,Tekendo-Ngongang Cedrik1,Duong Dat1,Solomon Benjamin D.1

Affiliation:

1. Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland

Abstract

ImportanceThe lack of standardized genetics training in pediatrics residencies, along with a shortage of medical geneticists, necessitates innovative educational approaches.ObjectiveTo compare pediatric resident recognition of Kabuki syndrome (KS) and Noonan syndrome (NS) after 1 of 4 educational interventions, including generative artificial intelligence (AI) methods.Design, Setting, and ParticipantsThis comparative effectiveness study used generative AI to create images of children with KS and NS. From October 1, 2022, to February 28, 2023, US pediatric residents were provided images through a web-based survey to assess whether these images helped them recognize genetic conditions.InterventionsParticipants categorized 20 images after exposure to 1 of 4 educational interventions (text-only descriptions, real images, and 2 types of images created by generative AI).Main Outcomes and MeasuresAssociations between educational interventions with accuracy and self-reported confidence.ResultsOf 2515 contacted pediatric residents, 106 and 102 completed the KS and NS surveys, respectively. For KS, the sensitivity of text description was 48.5% (128 of 264), which was not significantly different from random guessing (odds ratio [OR], 0.94; 95% CI, 0.69-1.29; P = .71). Sensitivity was thus compared for real images vs random guessing (60.3% [188 of 312]; OR, 1.52; 95% CI, 1.15-2.00; P = .003) and 2 types of generative AI images vs random guessing (57.0% [212 of 372]; OR, 1.32; 95% CI, 1.04-1.69; P = .02 and 59.6% [193 of 324]; OR, 1.47; 95% CI, 1.12-1.94; P = .006) (denominators differ according to survey responses). The sensitivity of the NS text-only description was 65.3% (196 of 300). Compared with text-only, the sensitivity of the real images was 74.3% (205 of 276; OR, 1.53; 95% CI, 1.08-2.18; P = .02), and the sensitivity of the 2 types of images created by generative AI was 68.0% (204 of 300; OR, 1.13; 95% CI, 0.77-1.66; P = .54) and 71.0% (247 of 328; OR, 1.30; 95% CI, 0.92-1.83; P = .14). For specificity, no intervention was statistically different from text only. After the interventions, the number of participants who reported being unsure about important diagnostic facial features decreased from 56 (52.8%) to 5 (7.6%) for KS (P < .001) and 25 (24.5%) to 4 (4.7%) for NS (P < .001). There was a significant association between confidence level and sensitivity for real and generated images.Conclusions and RelevanceIn this study, real and generated images helped participants recognize KS and NS; real images appeared most helpful. Generated images were noninferior to real images and could serve an adjunctive role, particularly for rare conditions.

Publisher

American Medical Association (AMA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3