Association of Body Mass Index and Waist Circumference With Imaging Metrics of Brain Integrity and Functional Connectivity in Children Aged 9 to 10 Years in the US, 2016-2018

Author:

Kaltenhauser Simone12,Weber Clara F.1,Lin Huang1,Mozayan Ali1,Malhotra Ajay1,Constable R. Todd1,Acosta Julián N.3,Falcone Guido J.3,Taylor Sarah N.4,Ment Laura R.34,Sheth Kevin N.3,Payabvash Seyedmehdi1

Affiliation:

1. Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut

2. University of Regensburg, Regensburg, Germany

3. Department of Neurology, Yale School of Medicine, New Haven, Connecticut

4. Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut

Abstract

ImportanceAside from widely known cardiovascular implications, higher weight in children may have negative associations with brain microstructure and neurodevelopment.ObjectiveTo evaluate the association of body mass index (BMI) and waist circumference with imaging metrics that approximate brain health.Design, Setting, and ParticipantsThis cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study to examine the association of BMI and waist circumference with multimodal neuroimaging metrics of brain health in cross-sectional and longitudinal analyses over 2 years. From 2016 to 2018, the multicenter ABCD study recruited more than 11 000 demographically representative children aged 9 to 10 years in the US. Children without any history of neurodevelopmental or psychiatric disorders were included in this study, and a subsample of children who completed 2-year follow-up (34%) was included for longitudinal analysis.ExposuresChildren’s weight, height, waist circumference, age, sex, race and ethnicity, socioeconomic status, handedness, puberty status, and magnetic resonance imaging scanner device were retrieved and included in the analysis.Main Outcomes and MeasuresAssociation of preadolescents’ BMI z scores and waist circumference with neuroimaging indicators of brain health: cortical morphometry, resting-state functional connectivity, and white matter microstructure and cytostructure.ResultsA total of 4576 children (2208 [48.3%] female) at a mean (SD) age of 10.0 years (7.6 months) were included in the baseline cross-sectional analysis. There were 609 (13.3%) Black, 925 (20.2%) Hispanic, and 2565 (56.1%) White participants. Of those, 1567 had complete 2-year clinical and imaging information at a mean (SD) age of 12.0 years (7.7 months). In cross-sectional analyses at both time points, higher BMI and waist circumference were associated with lower microstructural integrity and neurite density, most pronounced in the corpus callosum (fractional anisotropy for BMI and waist circumference at baseline and second year: P < .001; neurite density for BMI at baseline: P < .001; neurite density for waist circumference at baseline: P = .09; neurite density for BMI at second year: P = .002; neurite density for waist circumference at second year: P = .05), reduced functional connectivity in reward- and control-related networks (eg, within the salience network for BMI and waist circumference at baseline and second year: P < .002), and thinner brain cortex (eg, for the right rostral middle frontal for BMI and waist circumference at baseline and second year: P < .001). In longitudinal analysis, higher baseline BMI was most strongly associated with decelerated interval development of the prefrontal cortex (left rostral middle frontal: P = .003) and microstructure and cytostructure of the corpus callosum (fractional anisotropy: P = .01; neurite density: P = .02).Conclusions and RelevanceIn this cross-sectional study, higher BMI and waist circumference among children aged 9 to 10 years were associated with imaging metrics of poorer brain structure and connectivity as well as hindered interval development. Future follow-up data from the ABCD study can reveal long-term neurocognitive implications of excess childhood weight. Imaging metrics that had the strongest association with BMI and waist circumference in this population-level analysis may serve as target biomarkers of brain integrity in future treatment trials of childhood obesity.

Publisher

American Medical Association (AMA)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3