Development of a Classification System for Live Surgical Feedback

Author:

Wong Elyssa Y.1,Chu Timothy N.1,Ma Runzhuo1,Dalieh Istabraq S.1,Yang Cherine H.1,Ramaswamy Ashwin2,Medina Luis G.1,Kocielnik Rafal3,Ladi-Seyedian Seyedeh-Sanam1,Shtulman Andrew4,Cen Steven Y.5,Goldenberg Mitchell G.1,Hung Andrew J.1

Affiliation:

1. Center for Robotic Simulation and Education, Catherine and Joseph Aresty Department of Urology, USC Institute of Urology, University of Southern California, Los Angeles

2. Department of Urology, Weill Cornell Medicine, New York, New York

3. Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena

4. Thinking Lab, Department of Psychology, Occidental College, Los Angeles, California

5. Department of Radiology, University of Southern California, Los Angeles

Abstract

ImportanceLive feedback in the operating room is essential in surgical training. Despite the role this feedback plays in developing surgical skills, an accepted methodology to characterize the salient features of feedback has not been defined.ObjectiveTo quantify the intraoperative feedback provided to trainees during live surgical cases and propose a standardized deconstruction for feedback.Design, Setting, and ParticipantsIn this qualitative study using a mixed methods analysis, surgeons at a single academic tertiary care hospital were audio and video recorded in the operating room from April to October 2022. Urological residents, fellows, and faculty attending surgeons involved in robotic teaching cases during which trainees had active control of the robotic console for at least some portion of a surgery were eligible to voluntarily participate. Feedback was time stamped and transcribed verbatim. An iterative coding process was performed using recordings and transcript data until recurring themes emerged.ExposureFeedback in audiovisual recorded surgery.Main Outcomes and MeasuresThe primary outcomes were the reliability and generalizability of a feedback classification system in characterizing surgical feedback. Secondary outcomes included assessing the utility of our system.ResultsIn 29 surgical procedures that were recorded and analyzed, 4 attending surgeons, 6 minimally invasive surgery fellows, and 5 residents (postgraduate years, 3-5) were involved. For the reliability of the system, 3 trained raters achieved moderate to substantial interrater reliability in coding cases using 5 types of triggers, 6 types of feedback, and 9 types of responses (prevalence-adjusted and bias-adjusted κ range: a 0.56 [95% CI, 0.45-0.68] minimum for triggers to a 0.99 [95% CI, 0.97-1.00] maximum for feedback and responses). For the generalizability of the system, 6 types of surgical procedures and 3711 instances of feedback were analyzed and coded with types of triggers, feedback, and responses. Significant differences in triggers, feedback, and responses reflected surgeon experience level and surgical task being performed. For example, as a response, attending surgeons took over for safety concerns more often for fellows than residents (prevalence rate ratio [RR], 3.97 [95% CI, 3.12-4.82]; P = .002), and suturing involved more errors that triggered feedback than dissection (RR, 1.65 [95% CI, 1.03-3.33]; P = .007). For the utility of the system, different combinations of trainer feedback had associations with rates of different trainee responses. For example, technical feedback with a visual component was associated with an increased rate of trainee behavioral change or verbal acknowledgment responses (RR, 1.11 [95% CI, 1.03-1.20]; P = .02).Conclusions and RelevanceThese findings suggest that identifying different types of triggers, feedback, and responses may be a feasible and reliable method for classifying surgical feedback across several robotic procedures. Outcomes suggest that a system that can be generalized across surgical specialties and for trainees of different experience levels may help galvanize novel surgical education strategies.

Publisher

American Medical Association (AMA)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3