Problems and Potentials of Automated Object Detection for Skin Cancer Recognition
Author:
Affiliation:
1. Department of Dermatology, Medical University of Vienna, Vienna, Austria
Publisher
American Medical Association (AMA)
Subject
Dermatology
Link
https://jamanetwork.com/journals/jamadermatology/articlepdf/2756344/jamadermatology_tschandl_2019_ed_190030.pdf
Reference9 articles.
1. Dermatologist-level classification of skin cancer with deep neural networks.;Esteva;Nature,2017
2. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm.;Han;J Invest Dermatol,2018
3. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.;Haenssle;Ann Oncol,2018
4. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study.;Tschandl;Lancet Oncol,2019
5. Keratinocytic skin cancer detection on the face using region-based convolutional neural network;Han;JAMA Dermatol
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The degradation of performance of a state-of-the-art skin image classifier when applied to patient-driven internet search;Scientific Reports;2022-09-28
2. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot;Frontiers of Information Technology & Electronic Engineering;2022-08
3. Artificial intelligence for melanoma diagnosis;Italian Journal of Dermatology and Venereology;2021-07
4. Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study;PLOS Medicine;2020-11-25
5. Künstliche Intelligenz und Smartphone-Programm-Applikationen (Apps);Der Hautarzt;2020-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3