Quantitative Sensory Testing to Characterize Sensory Changes in Hidradenitis Suppurativa Skin Lesions

Author:

Alsouhibani Ali12,Speck Patrick3,Cole Emily F.3,Mustin Danielle E.3,Li Yiwen3,Barron Jason R.3,Orenstein Lauren A. V.3,Harper Daniel E.1

Affiliation:

1. Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia

2. Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia

3. Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia

Abstract

ImportancePain is the most impactful symptom in patients with hidradenitis suppurativa (HS). Characterization of sensory profiles may improve understanding of pain mechanisms in HS and facilitate identification of effective pain management strategies.ObjectiveTo characterize somatosensory profiles in patients with HS at clinically affected and nonaffected sites compared with pain-free reference data.Design, Setting, and ParticipantsThis cross-sectional study was conducted at the Emory University Dermatology Clinic. It was hypothesized (1) that patients with HS would demonstrate hypersensitivity to pain in HS lesions and (2) that some patients would have sensory profiles consistent with complex pain mechanisms. Therefore, adults with dermatologist-diagnosed HS and at least 1 painful HS lesion at the time of testing were enrolled between September 10, 2020, and March 21, 2022. Patients with other diagnoses contributing to pain or neuropathy were excluded. Data analysis was conducted between March and April 2022.ExposureQuantitative sensory testing was performed on HS lesions and control skin according to a standardized protocol.Main Outcomes and MeasuresQuantitative sensory testing outcomes included innocuous thermal and mechanical sensitivity (cold, warmth, and light touch detection thresholds), noxious thermal and mechanical sensitivity (cold, heat, pinprick, and deep pressure pain thresholds and suprathreshold pinprick sensitivity), temporal summation of pinprick, paradoxical thermal sensations, and dynamic mechanical allodynia (pain upon light stroking of the skin). Sensitivity in HS lesions was compared with sensitivity in a control location (the hand) and in pain-free controls using t tests.ResultsThis study included 20 participants with a median age of 35.5 (IQR, 30.0-46.5) years, the majority of whom were women (15 [75%]). In terms of race and ethnicity, 2 participants (10%) self-identified as Asian, 11 (55%) as Black, 6 (30%) as White, and 1 (5%) as more than 1 race or ethnicity. Compared with site-specific reference values from healthy, pain-free control participants, HS lesions were insensitive to innocuous cold and warmth, noxious heat, and light touch (t = −5.69, −10.20, −3.84, and 4.46, respectively; all P < .001). In contrast, HS lesions also demonstrated significant hypersensitivity to deep pressure pain (t = 8.36; P < .001) and cutaneous pinprick (t = 2.07; P = .046). Hypersensitivity to deep pressure pain was also observed in the control site (t = 5.85; P < .001). A subset of patients with HS displayed changes in pain processing that are often seen in neuropathic and nociplastic pain conditions, including hypersensitivity to repetitive pinprick (5 [26%]), paradoxical thermal sensations (3 [15%]), and pain upon light stroking of the skin (10 [50%]).Conclusions and RelevanceThe findings of this cross-sectional study suggest that HS involves local changes in the skin or its free nerve endings, possibly leading to peripheral neuropathy and alterations in the transduction of innocuous and noxious thermal and mechanical stimuli. For some patients, central nervous system changes in somatosensory processing may also occur, but confirmatory evidence is needed. Better understanding of neuropathic and nociplastic mechanisms in HS pain could lead to individually tailored treatments.

Publisher

American Medical Association (AMA)

Subject

Dermatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3