Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses

Author:

Wang Shirley V.1,Schneeweiss Sebastian1,Franklin Jessica M.12,Desai Rishi J.1,Feldman William1,Garry Elizabeth M.3,Glynn Robert J.1,Lin Kueiyu Joshua1,Paik Julie1,Patorno Elisabetta1,Suissa Samy4,D’Andrea Elvira15,Jawaid Dureshahwar1,Lee Hemin1,Pawar Ajinkya1,Sreedhara Sushama Kattinakere1,Tesfaye Helen1,Bessette Lily G.1,Zabotka Luke1,Lee Su Been1,Gautam Nileesa1,York Cassie1,Zakoul Heidi1,Concato John6,Martin David67,Paraoan Dianne6,Quinto Kenneth6,

Affiliation:

1. Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

2. Now with Optum, Boston, Massachusetts

3. Aetion, Inc, New York, New York

4. McGill University, Montreal, Quebec, Canada

5. Now with AbbVie Inc, Washington, DC

6. Office of Medical Policy, US Food and Drug Administration, Silver Springs, Maryland

7. Now with Moderna, Cambridge, Massachusetts

Abstract

ImportanceNonrandomized studies using insurance claims databases can be analyzed to produce real-world evidence on the effectiveness of medical products. Given the lack of baseline randomization and measurement issues, concerns exist about whether such studies produce unbiased treatment effect estimates.ObjectiveTo emulate the design of 30 completed and 2 ongoing randomized clinical trials (RCTs) of medications with database studies using observational analogues of the RCT design parameters (population, intervention, comparator, outcome, time [PICOT]) and to quantify agreement in RCT-database study pairs.Design, Setting, and ParticipantsNew-user cohort studies with propensity score matching using 3 US claims databases (Optum Clinformatics, MarketScan, and Medicare). Inclusion-exclusion criteria for each database study were prespecified to emulate the corresponding RCT. RCTs were explicitly selected based on feasibility, including power, key confounders, and end points more likely to be emulated with real-world data. All 32 protocols were registered on ClinicalTrials.gov before conducting analyses. Emulations were conducted from 2017 through 2022.ExposuresTherapies for multiple clinical conditions were included.Main Outcomes and MeasuresDatabase study emulations focused on the primary outcome of the corresponding RCT. Findings of database studies were compared with RCTs using predefined metrics, including Pearson correlation coefficients and binary metrics based on statistical significance agreement, estimate agreement, and standardized difference.ResultsIn these highly selected RCTs, the overall observed agreement between the RCT and the database emulation results was a Pearson correlation of 0.82 (95% CI, 0.64-0.91), with 75% meeting statistical significance, 66% estimate agreement, and 75% standardized difference agreement. In a post hoc analysis limited to 16 RCTs with closer emulation of trial design and measurements, concordance was higher (Pearson r, 0.93; 95% CI, 0.79-0.97; 94% meeting statistical significance, 88% estimate agreement, 88% standardized difference agreement). Weaker concordance occurred among 16 RCTs for which close emulation of certain design elements that define the research question (PICOT) with data from insurance claims was not possible (Pearson r, 0.53; 95% CI, 0.00-0.83; 56% meeting statistical significance, 50% estimate agreement, 69% standardized difference agreement).Conclusions and RelevanceReal-world evidence studies can reach similar conclusions as RCTs when design and measurements can be closely emulated, but this may be difficult to achieve. Concordance in results varied depending on the agreement metric. Emulation differences, chance, and residual confounding can contribute to divergence in results and are difficult to disentangle.

Publisher

American Medical Association (AMA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3