Feasibility and Clinical Utility of Prediction Models for Breast Cancer–Related Lymphedema Incorporating Racial Differences in Disease Incidence

Author:

Rochlin Danielle H.1,Barrio Andrea V.2,McLaughlin Sarah3,Van Zee Kimberly J.2,Woods Jack F.1,Dayan Joseph H.1,Coriddi Michelle R.1,McGrath Leslie A.1,Bloomfield Emily A.1,Boe Lillian4,Mehrara Babak J.1

Affiliation:

1. Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York

2. Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York

3. Breast Clinic, Department of Surgery, Mayo Clinic, Jacksonville, Florida

4. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York

Abstract

ImportanceBreast cancer–related lymphedema (BCRL) is a common complication of axillary lymph node dissection (ALND) but can also develop after sentinel lymph node biopsy (SLNB). Several models have been developed to predict the risk of disease development before and after surgery; however, these models have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, low sensitivity or specificity, and lack of risk assessment for patients treated with SLNB.ObjectiveTo create simple and accurate prediction models for BCRL that can be used to estimate preoperative or postoperative risk.Design, Setting, and ParticipantsIn this prognostic study, women with breast cancer who underwent ALND or SLNB from 1999 to 2020 at Memorial Sloan Kettering Cancer Center and the Mayo Clinic were included. Data were analyzed from September to December 2022.Main Outcomes and MeasuresDiagnosis of lymphedema based on measurements. Two predictive models were formulated via logistic regression: a preoperative model (model 1) and a postoperative model (model 2). Model 1 was externally validated using a cohort of 34 438 patients with an International Classification of Diseases diagnosis of breast cancer.ResultsOf 1882 included patients, all were female, and the mean (SD) age was 55.6 (12.2) years; 80 patients (4.3%) were Asian, 190 (10.1%) were Black, 1558 (82.8%) were White, and 54 (2.9%) were another race (including American Indian and Alaska Native, other race, patient refused to disclose, or unknown). A total of 218 patients (11.6%) were diagnosed with BCRL at a mean (SD) follow-up of 3.9 (1.8) years. The BCRL rate was significantly higher among Black women (42 of 190 [22.1%]) compared with all other races (Asian, 10 of 80 [12.5%]; White, 158 of 1558 [10.1%]; other race, 8 of 54 [14.8%]; P < .001). Model 1 included age, weight, height, race, ALND/SLNB status, any radiation therapy, and any chemotherapy. Model 2 included age, weight, race, ALND/SLNB status, any chemotherapy, and patient-reported arm swelling. Accuracy was 73.0% for model 1 (sensitivity, 76.6%; specificity, 72.5%; area under the receiver operating characteristic curve [AUC], 0.78; 95% CI, 0.75-0.81) at a cutoff of 0.18, and accuracy was 81.1% for model 2 (sensitivity, 78.0%; specificity, 81.5%; AUC, 0.86; 95% CI, 0.83-0.88) at a cutoff of 0.10. Both models demonstrated high AUCs on external (model 1: 0.75; 95% CI, 0.74-0.76) or internal (model 2: 0.82; 95% CI, 0.79-0.85) validation.Conclusions and RelevanceIn this study, preoperative and postoperative prediction models for BCRL were highly accurate and clinically relevant tools comprised of accessible inputs and underscored the effects of racial differences on BCRL risk. The preoperative model identified high-risk patients who require close monitoring or preventative measures. The postoperative model can be used for screening of high-risk patients, thus decreasing the need for frequent clinic visits and arm volume measurements.

Publisher

American Medical Association (AMA)

Subject

Surgery

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3