Affiliation:
1. Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
2. Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
3. Division of Epidemiology, Mayo Clinic, Rochester, Minnesota
4. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
5. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
6. Department of Surgery, Mayo Clinic, Rochester, Minnesota
7. Department of General Internal Medicine, Mayo Clinic, Rochester, Minnesota
8. Cancer Biology, Mayo Clinic, Jacksonville, Florida
Abstract
ImportanceBenign breast disease (BBD) comprises approximately 75% of breast biopsy diagnoses. Surgical biopsy specimens diagnosed as nonproliferative (NP), proliferative disease without atypia (PDWA), or atypical hyperplasia (AH) are associated with increasing breast cancer (BC) risk; however, knowledge is limited on risk associated with percutaneously diagnosed BBD.ObjectivesTo estimate BC risk associated with BBD in the percutaneous biopsy era irrespective of surgical biopsy.Design, Setting, and ParticipantsIn this retrospective cohort study, BBD biopsy specimens collected from January 1, 2002, to December 31, 2013, from patients with BBD at Mayo Clinic in Rochester, Minnesota, were reviewed by 2 pathologists masked to outcomes. Women were followed up from 6 months after biopsy until censoring, BC diagnosis, or December 31, 2021.ExposureBenign breast disease classification and multiplicity by pathology panel review.Main OutcomesThe main outcome was diagnosis of BC overall and stratified as ductal carcinoma in situ (DCIS) or invasive BC. Risk for presence vs absence of BBD lesions was assessed by Cox proportional hazards regression. Risk in patients with BBD compared with female breast cancer incidence rates from the Iowa Surveillance, Epidemiology, and End Results (SEER) program were estimated.ResultsAmong 4819 female participants, median age was 51 years (IQR, 43-62 years). Median follow-up was 10.9 years (IQR, 7.7-14.2 years) for control individuals without BC vs 6.6 years (IQR, 3.7-10.1 years) for patients with BC. Risk was higher in the cohort with BBD than in SEER data: BC overall (standard incidence ratio [SIR], 1.95; 95% CI, 1.76-2.17), invasive BC (SIR, 1.56; 95% CI, 1.37-1.78), and DCIS (SIR, 3.10; 95% CI, 2.54-3.77). The SIRs increased with increasing BBD severity (1.42 [95% CI, 1.19-1.71] for NP, 2.19 [95% CI, 1.88-2.54] for PDWA, and 3.91 [95% CI, 2.97-5.14] for AH), comparable to surgical cohorts with BBD. Risk also increased with increasing lesion multiplicity (SIR: 2.40 [95% CI, 2.06-2.79] for ≥3 foci of NP, 3.72 [95% CI, 2.31-5.99] for ≥3 foci of PDWA, and 5.29 [95% CI, 3.37-8.29] for ≥3 foci of AH). Ten-year BC cumulative incidence was 4.3% for NP, 6.6% for PDWA, and 14.6% for AH vs an expected population cumulative incidence of 2.9%.Conclusions and RelevanceIn this contemporary cohort study of women diagnosed with BBD in the percutaneous biopsy era, overall risk of BC was increased vs the general population (DCIS and invasive cancer combined), similar to that in historical BBD cohorts. Development and validation of pathologic classifications including both BBD severity and multiplicity may enable improved BC risk stratification.
Publisher
American Medical Association (AMA)