Use of Artificial Intelligence to Represent Emergent Systems and Augment Surgical Decision-making
Author:
Affiliation:
1. Department of Surgery, University of Florida Health, Gainesville
2. Department of Medicine, University of Florida Health, Gainesville
Publisher
American Medical Association (AMA)
Subject
Surgery
Link
https://jamanetwork.com/journals/jamasurgery/articlepdf/2736338/jamasurgery_loftus_2019_vp_190005.pdf
Reference7 articles.
1. The regulation of ant colony foraging activity without spatial information.;Prabhakar;PLoS Comput Biol,2012
2. Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence.;Lipsitz;JAMA,1992
3. Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator.;Bertsimas;Ann Surg,2018
4. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study.;Brennan;Surgery,2019
5. The Third International Consensus definitions for sepsis and septic shock (sepsis-3).;Singer;JAMA,2016
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Current and future applications of artificial intelligence in surgery: implications for clinical practice and research;Frontiers in Surgery;2024-05-09
2. Explainable Automated Non-linear Computation scoring system for Health (EACH) score : a Machine Learning based Explainable Automated Nonlinear Computation scoring system for Health and an application for prediction of perioperative stroke (Preprint);2024-03-03
3. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines;Artificial Intelligence;2023-12-13
4. Intelligent selection of healthcare supply chain mode – an applied research based on artificial intelligence;Frontiers in Public Health;2023-12-11
5. The use of artificial intelligence in health care. Problems of identification of patients' conditions in the processes of detailing the diagnosis;Artificial Intelligence;2023-03-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3