Associations of the Gut Microbiome With Treatment Resistance in Schizophrenia

Author:

Vasileva Svetlina S.12,Yang Yuanhao34,Baker Andrea25,Siskind Dan1256,Gratten Jacob3,Eyles Darryl12

Affiliation:

1. Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia

2. Queensland Centre for Mental Health Research, Wacol, Queensland, Australia

3. Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia

4. Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia

5. Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Brisbane South, Queensland, Australia

6. University of Queensland School of Clinical Medicine, Brisbane, Queensland, Australia

Abstract

ImportanceThere is growing interest in the role of gut microbiome composition in schizophrenia. However, lifestyle factors are often neglected, and few studies have investigated microbiome composition in treatment-resistant schizophrenia.ObjectiveTo explore associations between the gut microbiome and schizophrenia diagnosis, treatment resistance, clozapine response, and treatment-related adverse effects while adjusting for demographic and lifestyle factors.Design, Setting, and ParticipantsIn this case-control study of adults aged 20 to 63 years, stool samples and data on demographic characteristics, lifestyle, and medication use were collected and gut microbiome measures obtained using shotgun metagenomics. Participants with a schizophrenia diagnosis were referred through psychiatric inpatient units and outpatient clinics. Data were collected for 4 distinct groups: control individuals without a psychiatric diagnosis (past or present), individuals with treatment-responsive schizophrenia taking nonclozapine antipsychotic medications, clozapine-responsive individuals with treatment-resistant schizophrenia, and clozapine-nonresponsive individuals with treatment-resistant schizophrenia. Participants were recruited between November 2020 and November 2021. Control individuals were recruited in parallel through posters and online advertisements and matched for age, sex, and body mass index (BMI) to the individuals with schizophrenia. Participants were excluded if taking antibiotics in the past 2 months, if unable to communicate in English or otherwise follow study instructions, were pregnant or planning to become pregnant, or had any concomitant disease or condition making them unsuited to the study per investigator assessment. Data were analyzed from January 2022 to March 2023.Main Outcomes and MeasuresOmics relationship matrices, α and β diversity, and relative abundance of microbiome features.ResultsData were collected for 97 individuals (71 [74%] male; mean [SD] age, 40.4 [10.3] years; mean [SD] BMI, 32.8 [7.4], calculated as weight in kilograms divided by height in meters squared). Significant microbiome associations with schizophrenia were observed at multiple taxonomic and functional levels (eg, common species: b2, 30%; SE, 13%; adjusted P = .002) and treatment resistance (eg, common species: b2, 27%; SE, 16%; adjusted P = .03). In contrast, limited evidence was found for microbiome associations with clozapine response, constipation, or metabolic syndrome. Significantly decreased microbial richness was found in individuals with schizophrenia compared to control individuals (t95 = 4.25; P < .001; mean [SD] for control individuals, 151.8 [32.31]; mean [SD] for individuals with schizophrenia, 117.00 [36.2]; 95% CI, 18.6-51.0), which remained significant after a covariate and multiple comparison correction. However, limited evidence was found for differences in β diversity (weighted UniFrac) for schizophrenia diagnosis (permutational multivariate analysis of variance [PERMANOVA]: R2, 0.03; P = .02), treatment resistance (R2, 0.02; P = .18), or clozapine response (R2, 0.04; P = .08). Multiple differentially abundant bacterial species (19) and metabolic pathways (162) were found in individuals with schizophrenia, which were primarily associated with treatment resistance and clozapine exposure.Conclusions and RelevanceThe findings in this study are consistent with the idea that clozapine induces alterations to gut microbiome composition, although the possibility that preexisting microbiome differences contribute to treatment resistance cannot be ruled out. These findings suggest that prior reports of microbiome alterations in individuals with chronic schizophrenia may be due to medication or lifestyle factors and that future studies should incorporate these variables in their design and interpretation.

Publisher

American Medical Association (AMA)

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3