Quantifying and Interpreting the Prediction Accuracy of Models for the Time of a Cardiovascular Event—Moving Beyond C Statistic

Author:

Wang Xuan1,Claggett Brian Lee2,Tian Lu3,Malachias Marcus Vinícius Bolívar4,Pfeffer Marc A.2,Wei Lee-Jen1

Affiliation:

1. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts

2. Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts

3. Department of Biomedical Data Science, Stanford University, Stanford, California

4. Medical Sciences of Minas Gerais/FELUMA, Belo Horizonte, Brazil

Abstract

ImportanceFor personalized or stratified medicine, it is critical to establish a reliable and efficient prediction model for a clinical outcome of interest. The goal is to develop a parsimonious model with fewer predictors for broad future application without compromising predictability. A general approach is to construct various empirical models via individual patients’ specific baseline characteristics/biomarkers and then evaluate their relative merits. When the outcome of interest is the timing of a cardiovascular event, a commonly used metric to assess the adequacy of the fitted models is based on C statistics. These measures quantify a model’s ability to separate those who develop events earlier from those who develop them later or not at all (discrimination), but they do not measure how closely model estimates match observed outcomes (prediction accuracy). Metrics that provide clinically interpretable measures to quantify prediction accuracy are needed.ObservationsC statistics measure the concordance between the risk scores derived from the model and the observed event time observations. However, C statistics do not quantify the model prediction accuracy. The integrated Brier Score, which calculates the mean squared distance between the empirical cumulative event-free curve and its individual patient’s counterparts, estimates the prediction accuracy, but it is not clinically intuitive. A simple alternative measure is the average distance between the observed and predicted event times over the entire study population. This metric directly quantifies the model prediction accuracy and has often been used to evaluate the goodness of fit of the assumed models in settings other than survival data. This time-scale measure is easier to interpret than the C statistics or the Brier score.Conclusions and RelevanceThis article enhances our understanding of the model selection/evaluation process with respect to prediction accuracy. A simple, intuitive measure for quantifying such accuracy beyond C statistics can improve the reliability and efficiency of the selected model for personalized and stratified medicine.

Publisher

American Medical Association (AMA)

Subject

Cardiology and Cardiovascular Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3