Acid Resistance of Erbium-doped Yttrium Aluminum Garnet Laser–Treated and Phosphoric Acid–Etched Enamels

Author:

Kim Jung-Ho1,Kwon Oh-Won2,Kim Hyung-Il3,Kwon Yong Hoon4

Affiliation:

1. aPrivate practice, Daegu, Korea

2. bProfessor, Department of Orthodontics, College of Dentistry, Kyungpook National University, Daegu, Korea

3. cProfessor, Department of Dental Materials, College of Dentistry, Pusan National University, Pusan, Korea

4. dAssistant Professor, Department of Dental Materials, College of Dentistry and Medical Research Institute, Pusan National University, Pusan, Korea

Abstract

Abstract Objective: To compare the effects of erbium-doped yttrium aluminum garnet (Er:YAG) laser ablation and of phosphoric acid etching on the in vitro acid resistance of bovine enamel. Materials and Methods: Teeth were polished to make the surface flat. The polished enamel was either etched with 37% phosphoric acid for 30 seconds or ablated with a single 33 J/cm2 pulse from an Er:YAG laser. The control specimens were free from acid etching and laser ablation. Changes in crystal structure, dissolved mineral (calcium [Ca] and phosphorus [P]) contents, and calcium distribution in the enamel subsurface after a pH-cycling process were evaluated. Results: After laser treatment, poor crystal structures improved without forming any new phases, such as tricalcium phosphates. Among the tested enamels, dissolved mineral contents were significantly different (P < .05). Er:YAG laser–treated enamels had the lowest mineral dissolution (Ca, 13.78 ppm; P, 6.33 ppm), whereas phosphoric acid–etched enamels had the highest (Ca, 15.90 ppm; P, 7.33 ppm). The reduction rate and reduced depth of calcium content along the subsurface were lowest in Er:YAG laser–treated enamels. Conclusion: The Er:YAG laser–treated enamels are more acid resistant to acid attack than phosphoric acid–etched enamels.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3