Microleakage beneath Ceramic and Metal Brackets Photopolymerized with LED or Conventional Light Curing Units

Author:

Arıkan Serdar1,Arhun Neslihan2,Arman Ayça3,Cehreli Sevi Burcak4

Affiliation:

1. aResident, Osmanlı Dis Hastanesi, Conservative Dentistry, Ankara, Turkey

2. bAssistant Professor, Baskent University Faculty of Dentistry, Department of Conservative Dentistry, Ankara, Turkey

3. cAssistant Professor, Baskent University Faculty of Dentistry, Orthodontics, Ankara, Turkey

4. dAssistant Professor, Baskent University Faculty of Dentistry, Pediatric Dentistry, Ankara, Turkey

Abstract

Abstract Objective: To test the null hypotheses that (1) the type of light curing unit used (quartz-tungsten-halogen [QTH] or light-emitting diode [LED]) would not affect the amount of microleakage observed beneath brackets, and (2) the bracket type used (ceramic or metal) would not influence the amount of microleakage observed beneath brackets. Materials and Methods: 40 freshly-extracted human premolars were randomly assigned into 4 bonding groups (n = 10/group): group 1, metal bracket + LED-cured Transbond XT; group 2, ceramic bracket + LED-cured Transbond XT; group 3, metal bracket + QTH-cured Transbond XT; and group 4, ceramic bracket + QTH-cured Transbond XT. The teeth were kept in distilled water for 1 month, and thereafter subjected to 500 thermal cycles. Then, specimens were sealed with nail varnish, stained with 0.5% basic fuchsin for 24 hours, sectioned, and photographed under a stereomicroscope. Microleakage was scored with regard to the adhesive-tooth interface and the bracket-adhesive interface at both incisal and gingival margins. Statistical analysis was accomplished by Kruskal-Wallis and Mann-Whitney U-tests with Bonferroni correction. Results: Microleakage was observed in all groups. When an LED curing unit was used for adhesive polymerization, ceramic brackets displayed significantly less microleakage than metal brackets in both tooth-adhesive and bracket-adhesive interfaces. When a QTH curing unit was used, ceramic brackets displayed significantly less microleakage than metal brackets in the bracket-adhesive interface in both gingival and incisal margins. Conclusions: Ceramic brackets cured with LED units were the best combination, demonstrating the lowest microleakage scores.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3