Shear Bond Strength of Ceramic Brackets with Different Base Designs to Feldspathic Porcelains

Author:

Samruajbenjakul Buncha1,Kukiattrakoon Boonlert2

Affiliation:

1. a Lecturer, Department of Preventive Dentistry, Prince of Songkla University, Songkhla, Thailand.

2. b Assistant Professor, Department of Conservative Dentistry, Prince of Songkla University, Songkhla, Thailand.

Abstract

Abstract Objective: To test the hypothesis that the there is no difference between the shear bond strengths of different base designs of ceramic brackets bonded to glazed feldspathic porcelains. Materials and Methods: Forty glazed feldspathic porcelain specimens (15 mm in diameter and 1.5 mm in thickness) were prepared and divided into 4 groups (n = 10). Ten pieces of each group of different ceramic bracket base designs (beads, large round pits, and irregular base) and one group of stainless steel brackets (served as a control) were bonded to glazed feldspathic porcelains under a 200 gram load. Then all samples were subjected to shear bond strength evaluation with a universal testing machine at a crosshead speed of 0.2 mm/min. Data were analyzed through one-way ANOVA and Tukey's HSD test at a .05 significance level. The mode of failure after debonding was examined under a stereoscope. Results: This study revealed that the beads base design had the greatest shear bond strength (24.7 ± 1.9 MPa) and was significantly different from the large round pits base (21.3 ± 2 MPa), irregular base (19.2 ± 2.0 MPa), and metal mesh base (15.2 ± 2.4 MPa). The beads base design had 100% porcelain-adhesive failure, the large round pits had 100% bracket-adhesive failure, and the irregular base design had 70% combination failure and 30% porcelain-adhesive failure. Conclusions: The hypothesis is rejected. The various base designs of metal and ceramic brackets influence bond strength to glazed feldspathic porcelain, but all should be clinically acceptable.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3