Effect of Enamel Etching on Tensile Bond Strength of Brackets Bonded In Vivo with a Resin-reinforced Glass Ionomer Cement

Author:

Rosenbach Gabriella1,Cal-Neto Julio Pedrae2,Oliveira Silvio Rosan3,Chevitarese Orlando4,Almeida Marco Antonio5

Affiliation:

1. aProfessor, Department of Orthodontics, ABO-RS, Porto Alegre, Rio Grande do Sul, Brazil

2. bPrivate Practice of Lingual Orthodontics, Rio de Janeiro, RJ, Brazil

3. cPrivate Practice, Ribeirão Preto, São Paulo, Brazil

4. cPrivate Practice, Ribeirão Preto, São Paulo, Brazil†dDeceased. Head, Department of Dental Materials, Federal University of Rio de Janeiro, Brazil

5. eProfessor and Department Chair, Department of Orthodontics, State University of Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Abstract Objective: To evaluate the influence of enamel etching on tensile bond strength of orthodontic brackets bonded with resin-reinforced glass ionomer cement. Materials and Methods: The sample group consisted of 15 patients who had indications for extraction of four premolars for orthodontic reasons, equally divided into two different groups according to bracket and enamel preparation. Brackets were bonded in vivo, by the same operator, using a split mouth random technique: Group 1 (control), phosphoric acid + Fuji Ortho LC; Group 2, Fuji Ortho LC without acid conditioning. The teeth were extracted after 4 weeks using elevators. An Instron Universal Testing Machine was used to apply a tensile force directly to the enamel-bracket interface at a speed of 0.5 mm/min. The groups were compared using a Mann-Whitney U-test and Weibull analysis. Results: Mean results and standard deviations (in MPa) for the groups were: Group 1, 6.26 (3.21), Group 2, 6.52 (2.73). No significant difference was observed in the bond strengths of the two groups evaluated (P = .599). Conclusions: Fuji Ortho LC showed adequate shear bond strength and may be suitable for clinical use.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3