Affiliation:
1. Doctoral Student, Department of Orthodontics, Ludwig-Maximilians-University of Munich, Germany.
2. Professor and Department Chair, Department of Orthodontics, Ludwig-Maximilians-University of Munich, Germany.
Abstract
ABSTRACT
Objective:
To evaluate the effect of material thickness and width of the gingival edge on the forces and moments delivered by aligners prepared from Duran foil (PET-G) to a maxillary incisor during tipping and intrusion.
Materials and Methods:
Aligners prepared from PET-G of three material thicknesses (0.5, 0.625, and 0.75 mm) and three widths of gingival edges (0–1, 3–4, and 6–7 mm) were investigated during incisor palatal tipping and intrusion of 0.5 mm each. Forces and moments were measured with a six-component measuring device. The influence of aligner thickness and aligner extend on the force and moment development were tested for statistical significance (P < .05).
Results:
The Fx and Fz forces produced during palatal tipping and intrusion by the 0.75-mm aligner material was significantly higher than those produced by the 0.5-mm-thick material (P = .005 and P = .047, respectively). There was no statistical difference between aligner thickness of 0.5 and 0.625 mm and between 0.625 and 0.75 mm. The same behavior was observed for the palatal moment (My). The Fx and Fz forces produced during palatal tipping and intrusion by the aligner with an extension of 0–1 mm edge was significantly lower than that of the aligner with a larger extension (3–4 mm edge: P = .003; 6–7 mm: P = .001). However, there was no statistical difference between aligners with a 3–4-mm and a 6-mm edge. The same behavior was observed for the palatal moment (My).
Conclusions:
The forces and moments exerted by the PET-G aligner on teeth vary, depending on the material thickness, width of the aligner edge, and direction of tooth movement.
Publisher
The Angle Orthodontist (EH Angle Education & Research Foundation)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献