MATHEMATICAL MODELING OF STRESS-STRAIN STATE OF LOADED RODS WITH ACCOUNT OF TRANSVERSE BENDING

Author:

Abstract

Mathematical simulation of static and dynamic processes of strain taking into account of transverse bending under loading is presented in the paper in linear and geometrically nonlinear statements. An extensive analysis of research work carried out in universities and science centers all over the world is given, the relevance of the problem and the areas of solution application are emphasized. The mathematical correctness of the problem statement is shown. Variations of kinetic, potential energy, volume and surface forces are determined for mathematical models of static and dynamic processes of strain with taking into account of transverse bending of loaded rods in linear and geometrically nonlinear statements. Based on the theory of elastic strains and the refined theory of Vlasov-Dzhanelidze-Kabulov, and using the Ostrogradsky-Hamilton variation principle, a mathematical model of the statics and dynamics of the process of rod points displacement is developed for transverse bending in linear and geometrically nonlinear statements. Equations of a mathematical model with natural initial and boundary conditions in a vector form are given. A computational algorithm is developed for calculating the statics and dynamics of rods under loading in linear and geometrically non-linear statements using the central finite differences of the second order of accuracy. The strain processes when the rod is rigidly fixed at two edges are considered in linear and geometrically nonlinear statements. The calculation results obtained are given in the form of graphs. The propagation of longitudinal, transverse vibrations and the angle of inclination along the length of the rod was studied at different points of times. Linear and geometrically non-linear vibration results are analyzed and compared.

Publisher

Uzbekistan Research Online

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3