Constraints on integral measures of stress state in topology optimization problems

Author:

Kryshtal VolodymyrORCID,Yanchevskiy IhorORCID

Abstract

Topology optimization (TO) is a computational method of determining material distribution in a given design area to create the optimal shape of a part under given boundary conditions. The increased interest in the development of effective methods of designing parts of the optimal topology testifies to the relevance of these theoretical studies and the important applied value of the obtained results. In the classic formulation of maintenance, the minimization of the flexibility of the part under restrictions on the volume (mass) of the optimization result is chosen as a criterion for finding the specified distribution. Closer to practical application is the formulation of the maintenance problem, which involves minimizing the volume of the part, taking into account the condition of its strength. The inclusion of aggregate functions for the calculation of integral measures of the stress state has a number of advantages over the traditional check of the maximum value of mechanical stress: significant saving of time for solving the maintenance problem, reduction of computational costs and ensuring the stability of the computational process. This work presents and analyzes the specialization of the applied application of aggregate functions, which have been most widely used in modern research on maintenance issues, taking into account the strength of the optimized part. In particular, the P-norm and P-mean functions, the Kreiselmeier-Steinhauser functions, the smoothed Heaviside function, the measure of exceeded stresses, and the measure of uneven distribution of the stress state are described. The large number of options available in the literature for the mathematical formulation of limitations for integral measures of the stress state of designed parts indicates that the issue of developing a universal and effective method of designing parts, taking into account the criterion of its strength, remains open.

Publisher

Kyiv National University of Construction and Architecture

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3