On the use of strength criteria of anisotropic materials

Author:

Pyskunov SerhiyORCID,Bakhtavarshoev Tymur,Samofal Kostyantyn

Abstract

One of the distinctive properties of composite materials is their anisotropy, which allows, in particular, to use of their strength properties maximum. Thanks to new technologies, in particular 3-D printing, there are new opportunities for purposeful formation of the structure of composite materials and their properties. An important issue here is ensuring strength, which is determined depending on the structure of the composite as a whole and the mechanical characteristics of its individual components. The article reviews well-known strength criteria (Goldenblatt-Kopnov, Mises-Hill, Fisher, Hoffman, Tsai-Wu, and others), the relationship between them, and data on the reliability of their application under certain load conditions. Some of them assume the same properties of materials under conditions of compression and tension and are obtained by generalizing the classical theories of strength and plasticity of isotropic bodies. The criteria that take into account the different resistance of the composite material to tension and compression, which is inherent in many composite materials, have gained greater practical application. When choosing a strength criterion, from the point of view of structure, it is worth considering separately layered and reinforced composite materials, and from the point of view of load - the static or cyclic nature of its application. The criteria listed above do not take into account the damage accumulation in the material that occurs under the influence of external loads. The number of such known criteria is limited, because today there is no method for predicting the stage of scattered fracture of composite materials taking into account the anisotropy of mechanical properties, and the choice of the damage parameter is not justified. The perspective of developing such criteria for clarifying the received conclusions regarding the load-bearing capacity of products made of composite materials under different types of application of external loads is noted.

Publisher

Kyiv National University of Construction and Architecture

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3