Generation of energy in console piezoelectric energy harvesters

Author:

Grigoryeva LiudmylaORCID,Ivanenko PetroORCID,Korbakov OleksandrORCID

Abstract

Energy harvesting of mechanical vibrations and their conversion into electrical energy using piezoelectric devices has become widespread. This has been made possible by the creation of high-energy piezoelectric materials and the proliferation of miniature devices with a few milliwatts of power. In this work, the oscillations of the rod cantilever bimorph energy harvester under harmonic loads are investigated. A two-layer rod consisting of a brass base and a rectangular piezoelectric element with electroded flat surfaces without and with tip mass is considered. The thickness of the layers is much less than the width and the width is much less than the length, which allows us to use the hypothesis of flat sections and assumptions of the potential difference linearity by thickness of the element, as well as beams bending relations. There is derived the characteristic equation for beam bending oscillations, the wave numbers, circular frequencies and natural frequencies are determined. There is carried out The averaging of material characteristics over the cross-sectional area. Eigenforms of oscillations are constructed, the dependence of natural frequencies from body size and tip mass is analyzed. The next step is to study the forced oscillations of the energy harvesters with tip mass at the end at given oscillations of the base. The equation of the elastic line of the console is formed, the maximum deflections and angles of rotation are determined. The voltage generated on the piezo element plates is determined taking into account the electrical resistance. Due to the voltage and resistance of the conduct line the power of the energy harvester is determined. Curves of voltage and power dependence from load frequency and external resistance are constructed. It is established that the voltage and power of the element change in proportion to R. The maximum power of the energy collector occurs in the vicinity of resonances, and before the first resonance the power is almost zero. Between the first and second resonance, the power is approximately 1,5 mW. During the transition to the ultrasonic zone, the power of the energy collector increases significantly.Analysis of the harvester operation at resonant frequencies requires consideration of the damping of oscillations in the material.

Publisher

Kyiv National University of Construction and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3