Peculiarities of wave propagation processes in poroelastic media

Author:

Kara IrynaORCID

Abstract

During analyzing of wave propagation processes in the fluid-saturated porous media unlike the theory of elasticity should be applied proposed by Biot the two phase model of media in which porous the solid elements are belonging to the first phase and the elements of pores fluid filler are belong to the second phase. Sometimes, for solving problems three phase model are used in which porous skeleton is partially saturated by fluid and partially saturated by gas. For the elastic porous media are introduced parameters such as: the porosity, the fluid viscosity, the permeability, the Biot coefficient of effective stress, the shear modulus and the bulk modulus, the mass densities and the total density of the porous material. Also the fundamental characteristic of the porous media is propagation of three different compression waves: the longitudinal fast wave, the second longitudinal slow wave, and the third transversal slow wave. One of the methods that are used for solving problems of poroelasticity is the Boundary Integral Equation Method. The algorithmic bases of it are the boundary analogues of Somiliani’s formulas for the solid displacements and the fluid pressure. The boundary integral equations and the fundamental solutions that are comprised in the poroelastic equations are different from the theory of elasticity analogues because the body with fluid-saturated pores is differ from the continuous homogeneous elastic media. Figures show that the graphs for the poroelastic region may be gradual approximated to the elastic analogues during changing some parameters. The biggest influence for displacements functions has change of the parameter R especially gradual increase of it for the some order. When for changing the functions graphs of the generalized derivatives one gradual increase of the parameter Q for one order is enough.

Publisher

Kyiv National University of Construction and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3