Long short-term memory recurrent-neural-network-based bandwidth extension for automatic speech recognition

Author:

Tachioka Yuuki1,Ishii Jun1

Affiliation:

1. Information Technology R&D Center, Mitsubishi Electric Corporation

Publisher

Acoustical Society of Japan

Subject

Acoustics and Ultrasonics

Reference8 articles.

1. 1) Y. Wang, S. Zhao, Y. Yu and J. Kuang, ``Speech bandwidth extension based on GMM and clustering method,'' Proc. 5th Int. Conf. Communication Systems and Network Technologies (CSNT), pp. 437-441 (2015).

2. 2) S. Hochreiter and J. Schmidhuber, ``Long short-term memory,'' Neural Comput., 9, 1735-1780 (1997).

3. 3) T. Toda, A. W. Black and K. Tokuda, ``Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory,'' IEEE Trans. Audio Speech Lang. Process., 15, 2222-2235 (2007).

4. 4) F. Weninger, J. Geiger, M. Wöllmer, B. Schuller and G. Rigoll, ``The Munich feature enhancement approach to the 2nd CHiME challenge using BLSTM recurrent neural networks,'' Proc. 2nd CHiME Workshop Machine Listening in Multisource Environments, pp. 86-90 (2013).

5. 5) D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, M. Petr, Y. Qian, P. Schwarz, J. Silovský, G. Stemmer and K. Veselý, ``The Kaldi speech recognition toolkit,'' Proc. ASRU, pp. 1-4 (2011).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Recurrent Neural Networks-LSTM and GRU for Automatic Speech Recognition;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

2. Influencing Neutrosophic Factors of Speech Recognition Technology in English Collection;Journal of Cases on Information Technology;2022-02-03

3. Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition;IEEE Access;2022

4. Long Short-Term Memory Recurrent Neural Network for Automatic Recognition of Spoken English Digits;Mining Intelligence and Knowledge Exploration;2022

5. Tensor Decomposition in Deep Networks;Tensor Computation for Data Analysis;2021-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3