Modeling delay-fired explosion spectra at regional distances

Author:

Chapman M. C.1,Bollinger G. A.1,Sibol M. S.1

Affiliation:

1. Seismological Observatory Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0420

Abstract

Abstract The objectives of this study are to model the observed seismic spectra from large industrial explosions using information obtained from blaster's logs and to compare the explosion spectra with those of small earthquake signals from the same source region. The data set consists of digital waveforms from four mining explosions (200,000 + lb. of explosives each) and two earthquakes (M = 3.5 and 4.0) in eastern Kentucky. The data were recorded on a short-period regional network at distances ranging from 180 to 400 km and have good signal-to-noise ratios at frequencies from 0.5 to 10 Hz. The explosion amplitude spectra differ markedly from those of the earthquakes, by exhibiting strong time-independent amplitude modulations. This spectral modulation is directly attributable to the explosive charge geometry and firing sequence and is largely independent of source-station path and recording site. Modeling of the explosion source spectra shows that the major contributor to the modulated character of the spectra are amplitude minima at frequencies related to the total duration of the explosion sequence. Another important effect is amplitude reinforcement at low frequencies (e.g., 5 Hz) due to the comparatively long delay (0.2 sec) between the firing of individual rows of explosives. These features dominate both Pg and Lg amplitude spectra at frequencies less than 7 Hz. Accurate modeling of the observed spectra at frequencies greater than a few Hertz requires that the azimuth of the recording site be taken into account. Also, the spectra at higher frequencies become sensitive to random variations in the firing times of any of the various subexplosions.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3