Affiliation:
1. Sandia National Laboratories, 1515 Eubank Drive SE, Albuquerque, New Mexico 87123 U.S.A., cpoppel@sandia.gov
Abstract
Abstract
We document azimuthally dependent seismic scattering at the Source Physics Experiment (SPE) using the large‐N array. The large‐N array recorded the seismic wavefield produced by the SPE‐5 buried chemical explosion, which occurred in April 2016 at the Nevada National Security Site, U.S.A. By selecting a subset of vertical‐component geophones from the large‐N array, we formed 10 linear arrays, with different nominal source–receiver azimuths as well as six 2D arrays. For each linear array, we evaluate wavefield coherency as a function of frequency and interstation distance. For both the P arrival and post‐P arrivals, the coherency is higher in the northeast propagation direction, which is consistent with the strike of the steeply dipping Boundary fault adjacent to the northwest side of the large‐N array. Conventional array analysis using a suite of 2D arrays suggests that the presence of the fault may help explain the azimuthal dependence of the seismic‐wave coherency for all wave types. This fault, which separates granite from alluvium, may be acting as a vertically oriented refractor and/or waveguide.
Publisher
Seismological Society of America (SSA)
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献