Three-Dimensional Seismic-Wave Propagation Simulations in the Southern Korean Peninsula Using Pseudodynamic Rupture Models

Author:

Lee Jaeseok1ORCID,Song Jung-Hun1ORCID,Kim Seongryong2ORCID,Rhie Junkee1ORCID,Song Seok Goo3ORCID

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

2. Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea

3. Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea

Abstract

ABSTRACT Accurate and practical ground-motion predictions for potential large earthquakes are crucial for seismic hazard analysis of areas with insufficient instrumental data. Studies on historical earthquake records of the Korean Peninsula suggest that damaging earthquakes are possible in the southeastern region. Yet classical ground-motion prediction methods are limited in considering the physical rupture process and its effects on ground motion in complex velocity structures. In this study, we performed ground-motion simulations based on rigorous physics through pseudodynamic source modeling and wave propagation simulations in a 3D seismic velocity model. Ensembles of earthquake scenarios were generated by emulating the one- and two-point statistics of earthquake source parameters derived from a series of dynamic rupture models. The synthetic seismograms and the distributions of simulated peak ground velocities (PGVs) were compared with the observations of the 2016 Mw 5.4 Gyeongju earthquake in the Korean Peninsula. The effects of surface-wave radiation, rupture directivity, and both local and regional amplifications from the 3D wave propagation were reproduced accurately in the spatial distribution of simulated PGVs, in agreement with the observations from dense seismic networks by mean log residuals of −0.28 and standard deviations of 0.78. Amplifications in ground motions were found in regions having low crustal velocities and in regions of constructive interference from the crustal shear-wave phases associated with postcritical reflections from the Moho discontinuity. We extended the established approach to earthquake scenarios of Mw 6.0, 6.5, and 7.0, at the same location, to provide the distribution of ground motions from potential large earthquakes in the area. Although we demonstrate the value of these simulations, improvements in the accuracy of the 3D seismic velocity model and the scaling relationship of the source models would be necessary for a more accurate estimation of near-source ground motions.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3