Empirical Map-Based Nonergodic Models of Site Response in the Greater Los Angeles Area

Author:

Parker Grace A.1ORCID,Baltay Annemarie S.1ORCID

Affiliation:

1. U.S. Geological Survey, Earthquake Science Center, Moffett Field, California, U.S.A.

Abstract

ABSTRACTWe develop empirical estimates of site response at seismic stations in the Los Angeles area using recorded ground motions from 414 M 3–7.3 earthquakes in southern California. The data are from a combination of the Next Generation Attenuation-West2 project, the 2019 Ridgecrest earthquakes, and about 10,000 newly processed records. We estimate site response using an iterative mixed-effects residuals partitioning approach, accounting for azimuthal variations in anelastic attenuation and potential bias due to spatial clusters of colocated earthquakes. This process yields site response for peak ground acceleration, peak ground velocity, and pseudospectral acceleration relative to a 760 m/s shear-wave velocity (VS) reference condition. We employ regression kriging to generate a spatially continuous site response model, using the linear site and basin terms from Boore et al. (2014) as the background model, which depend on VS30 and depth to the 1 km/s VS isosurface. This is different from past approaches to nonergodic models, in which spatially varying coefficients are regressed. We validate the model using stations in the Community Seismic Network (CSN) that are in the middle of our model spatial domain but were not considered in model development, finding strong agreement between the interpolated model and CSN data for long periods. Our model could be implemented in regional seismic hazard analyses, which would lead to improvements especially at long return periods. Our site response model also has potential to improve both ground-motion accuracy and warning times for the U.S. Geological Survey ShakeAlert earthquake early warning (EEW) system. For a point-source EEW simulation of the 1994 M 6.7 Northridge earthquake, our model produces ground motions more consistent with the ground-truth ShakeMap and would alert areas with high population density such as downtown Los Angeles at lower estimated magnitudes (i.e., sooner) than an ergodic model for a modified Mercalli intensity 4.5 alerting threshold.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3