A Nonlinear Site Amplification Model for the Horizontal Component Developed for Ground-Motion Prediction Equations in Japan Using Site Period as the Site-Response Parameter

Author:

Hou Ruibin1,Zhao John X.2ORCID

Affiliation:

1. Department of Geotechnical Engineering, School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China

2. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering, Ministry of Education, Shandong Jianzhu University, Jinan, Shandong Province, China

Abstract

ABSTRACT This article presents a nonlinear site amplification model for ground-motion prediction equations (GMPEs), using site period as site-effect proxy based on the measured shear-wave velocity profiles of selected KiK-net and K-NET sites in Japan. This model was derived using 1D equivalent-linear site-response analysis for a total of 516 measured soil-site shear-wave velocity profiles subjected to a total of 912 components of rock-site records. The modulus reduction and damping curves for each soil layer were assigned based on the soil-type description for a particular layer. The site period and site impedance ratio affect both the linear and nonlinear parts of this study, and were used as the site parameters in the 1D amplification model. A large impedance ratio enhances the amplification ratios when the site responds elastically and enhances the nonlinear response when the site develops a significant nonlinear response. The effects of moment magnitude and source distance on the linear part of the 1D amplification model were also incorporated in the model. To implement the 1D amplification model into GMPEs, a model adjustment is required to match the GMPE amplification ratio at weak motion and to retain the nonlinear amplification ratio at the strong motion of the 1D model. The two-step adjustment method by Zhao, Hu, et al. (2015) was adopted in this study with significant modifications. It is not possible to obtain a credible second-step adjustment parameter using the GMPEs dataset only. We proposed three methods for calculating the scale factors. Method 1 is a constant angle in a 30°–60° range for all spectral periods; method 2 was based on the GMPE dataset and 1-D model parameters; and method 3 was based on the strong-motion records used for the 1D site modeling. A simple second-step adjustment factor leads to smoothing amplification ratios and soil-site spectrum.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3