Earthquakes Induced by Wastewater Injection, Part I: Model Development and Hindcasting

Author:

Grigoratos Iason12,Rathje Ellen1,Bazzurro Paolo2,Savvaidis Alexandros3

Affiliation:

1. University of Texas at Austin, Austin, Texas, U.S.A.

2. University School of Advanced Studies of Pavia (IUSS), Pavia, Italy

3. Bureau of Economic Geology at The University of Texas at Austin, Austin, Texas, U.S.A.

Abstract

ABSTRACTIn the past decade, several parts of central United States, including Oklahoma, have experienced unprecedented seismicity rates, following an increase in the volumes of wastewater fluids that are being disposed underground. In this article, we present a semi-empirical model to hindcast the observed seismicity given the injection time history. Our proposed recurrence model is a modified version of the Gutenberg–Richter relation, building upon the seismogenic index model, which predicts a linear relationship between the number of induced events and the injected volume. Our methodology accounts for the effects of spatiotemporal pore-pressure diffusion, the stressing-rate dependency of the time lag between injection and seismicity rate changes, and the rapid cessation of seismicity upon unloading. We also introduced a novel multiscale regression, which enabled us to produce grid-independent results of increased spatial resolution. Although the model is generic to be applicable in any region and has essentially only two free parameters for spatial calibration, it matches the earthquake time history of Oklahoma well across various scales, for both increasing and decreasing injection rates. In the companion paper (Grigoratos, Rathje, et al., 2020), we employ the model to distinguish the disposal-induced seismicity from the expected tectonic seismicity and test its forecasting potential.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3