High-frequency borehole seismograms recorded in the San Jacinto Fault zone, Southern California. Part 1. Polarizations

Author:

Aster Richard C.1,Shearer Peter M.1

Affiliation:

1. Institute of Geophysics and Planetary Physics University of California, San Diego San Diego, California

Abstract

Abstract Two borehole seismometer arrays (KNW-BH and PFO-BH) have been established in the Southern California Batholith region of the San Jacinto Fault zone by the U.S. Geological Survey. The sites are within 0.4 km of Anza network surface stations and have three-component seismometers deployed at 300 m depth, at 150 m depth, and at the surface. Downhole horizontal seismometers can be oriented to an accuracy of about 5° using regional and near-regional initial P-wave particle motions. Shear waves recorded downhole at the KNW-BH indicate that the strong alignment of initial S-wave particle motions previously observed at the (surface) KNW Anza site (KNW-AZ) is not generated in the near-surface weathered layer. The KNW-BH surface instrument, which sits atop a highly weathered zone, displays a significantly different (≈ 20°) initial S-wave polarization direction from that observed downhole and at KNW-AZ, which is bolted to an outcrop. Although downhole initial shear-wave particle motion directions are consistent with a shear-wave splitting hypothesis, observations of orthogonally polarized slow shear waves are generally elusive, even in seismograms recorded at 300 m. A cross-correlation measure of the apparent relative velocities of Sfast and Sslow horizontally polarized S waves suggests shallow shear-wave anisotropy, consistent with the observed initial S-wave particle motion direction, of 2.3 ± 1.7 per cent between 300 and 150 m and 7.5 ± 3.5 per cent between 150 and 0 m.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3