Hydrovolcanic Explosions at the Lava Ocean Entry of the 2018 Kilauea Eruption Recorded by Ocean-Bottom Seismometers

Author:

Banerjee Puja1,Shen Yang1ORCID

Affiliation:

1. 1Graduate School of Oceanography, The University of Rhode Island, Narragansett, Rhode Island, U.S.A.

Abstract

AbstractFrom the beginning of May 2018, the Kilauea Volcano on the island of Hawaii experienced its largest eruption in 200 yr followed by a period of unrest for months. Because hot molten lava entered the ocean from the ocean-entry point near the lower East Rift Zone, the lava–water interaction led to explosions. Some explosions were near the water surface and ejected fragments of lava, also known as lava bombs. In the early morning on 16 July 2018, one of those lava bombs, which was almost the size of a basketball, hit a sightseeing boat and injured 23 people. In this study, we analyzed the hydrophone data recorded from July to mid-September by ocean-bottom seismometers (OBSs) deployed offshore near the ocean entry point to identify and locate the hydroacoustic signals of the lava–water explosions. Acoustic signals of hydrovolcanic explosions are characterized by a short duration (less than a few seconds) and a broad frequency range (at least up to 100 Hz). To automate event detection, a short-term average versus long-term average method was applied to the complete dataset. Approximately 4300 events were detected and located near the coastline and further used to prepare a catalog. The distribution of the lava–water explosions is consistent with the pattern of the offshore lava delta formed during the 2018 eruption. Identifying such hydroacoustic signals recorded by OBSs may provide new avenues of research using various seismoacoustic events associated with volcanic eruptions.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference35 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3