A Dense Block Model Representing Western Continental United States Deformation for the 2023 Update to the National Seismic Hazard Model

Author:

Evans Eileen L.1

Affiliation:

1. 1Department of Geological Sciences, California State University, Northridge, California, U.S.A.

Abstract

Abstract Seismic hazard assessment, such as the U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM), relies on estimates of fault slip rate based on geology and/or geodetic observations such as the Global Navigation Satellite System (GNSS), including the Global Positioning System. Geodetic fault slip rates may be estimated within a 3D spherical block model, in which the crust is divided into microplates bounded by mapped faults; fault slip rates are determined by the relative rotations of adjacent microplates. Uncertainty in selecting appropriate block-bounding faults and in forming closed microplates has limited the interpretability of block models for seismic hazard modeling. By introducing an automated block closure algorithm and regularizing the resulting densely spaced block model with total variation regularization, I develop the densest and most complete block model of the western continental United States to date. The model includes 853 blocks bounded by 1017 geologically identified fault sections from the USGS NSHM Fault Sections database. Microplate rotations and fault slip rates are constrained by 4979 GNSS velocities and 1243 geologic slip rates. I identify a regularized solution that fits the GNSS velocity field with a root mean square misfit of 1.9 mm/yr and reproduces 57% of geologic slip rates within reported geologic uncertainty and model sensitivity, consistent with other geodetic-based models in this Focus Section. This block model includes slip on faults that are not included in the USGS NSHM Fault sections database (but are required to form closed blocks) for an estimate of “off-fault” deformation of 3.62×1019  N·m/yr, 56% of the total calculated moment accumulation rate in the model.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3