Crustal Strain Rates in the Western United States and Their Relationship with Earthquake Rates

Author:

Kreemer Corné1ORCID,Young Zachary M.2ORCID

Affiliation:

1. 1Nevada Bureau of Mines and Geology, and Seismological Laboratory, University of Nevada, Reno, Nevada, U.S.A.

2. 2Nevada Bureau of Mines and Geology, and Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada, U.S.A.

Abstract

Abstract We present a suite of strain rate models for the western United States based on geologic and geodetic data. The geologic data consist of Quaternary fault-slip rates and the geodetic data consists of a new compilation of Global Positioning System (GPS) velocities derived from continuous, semicontinuous, and campaign measurements. We remove postseismic deformation from the GPS time series in order for our geodetic strain rate model to best capture the interseismic strain accumulation rate. We present models based on either geologic or geodetic data, but also create a hybrid model. Although there are some differences between the models, the large-scale features are the same, with the noticeable exception for the Pacific Northwest where interseismic strain is naturally more distributed than the long-term strain release. We also present a map of earthquake rate densities based on mainshocks, and the result has similar spatial features similar to the strain rate models (at least in the southwestern United States). We perform a general correlation analysis between strain rate and seismicity rate (south of Cascadia) and find a change in linearity between seismicity and strain rates from slow to faster deforming areas with seismicity rates relatively lower for the latter. The extent of that change depends a bit on assumptions made on the declustering and completeness of the catalog, but the finding of a change in slope is robust across the different strain rate models. Linearity for all areas is only expected when Gutenberg–Richter parameters and parameters involved in the conversion from strain to moment rate are uniform across the study area. We discuss these qualifications, but find no single satisfactory explanation for our observation. Moreover, when considering a rather short time and space, theoretical considerations of sampling from a power-law distribution actually predict there to be a power law instead of a linear relationship, generally consistent with our observation.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference104 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3