EPM–DCNN: Earthquake Prediction Models Using Deep Convolutional Neural Networks

Author:

Shan Weifeng1ORCID,Zhang Mingjie1,Wang Maofa2ORCID,Chen Huiling3ORCID,Zhang Ruilei1ORCID,Yang Guangze1,Tang Yixiang4,Teng Yuntian4,Chen Jun5

Affiliation:

1. 1School of Emergency Management, Institute of Disaster Prevention, Langfang, China

2. 2Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, China

3. 3Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China

4. 4Institute of Geophysics, China Earthquake Administration, Beijing, China

5. 5Earthquake Administration of Anhui Province, Hefei, China

Abstract

ABSTRACT Earthquakes usually cause severe injuries and loss of life, so researchers have developed various methods to predict them. However, the prediction accuracies of these methods are not satisfactory. Unlike most artificial intelligence earthquake prediction methods using earthquake catalogs or seismic wave data, this article proposes three earthquake prediction models based on deep convolutional neural network-based (EPM-DCNN) using 11 continuous earthquake precursory observation item data, including fluid, geomagnetic, and deformation disciplines. To enhance the accuracy of the location prediction of earthquakes, we propose a method to divide the research area into six prediction blocks based on the K-means++ clustering algorithm using the epicenter of historical earthquakes. Using earthquake precursory observation time-series data from 1 January 2015 to 31 December 2018, we construct approximately 34,000 samples by sliding a fixed window size. Each sample is subdivided into 13 categories by combining the magnitude label and prediction block label. The experimental results show that EPM–DCNN B proposed in this article has an accuracy of 99.0% and a recall of 99.8%, which demonstrates the effectiveness of EPM–DCNN for seismic prediction compared to several state-of-the-art baselines.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3