Survey of Fragile Geologic Features and Their Quasi-Static Earthquake Ground-Motion Constraints, Southern Oregon

Author:

McPhillips Devin1ORCID,Scharer Katherine M.1

Affiliation:

1. U.S. Geological Survey, Earthquake Science Center, Pasadena, California, U.S.A.

Abstract

ABSTRACT Fragile geologic features (FGFs), which are extant on the landscape but vulnerable to earthquake ground shaking, may provide geological constraints on the intensity of prior shaking. These empirical constraints are particularly important in regions such as the Pacific Northwest that have not experienced a megathrust earthquake in written history. Here, we describe our field survey of FGFs in southern Oregon. We documented 58 features with fragile geometric characteristics, as determined from field measurements of size and strength, historical photographs, and light detection and ranging point clouds. Among the surveyed FGFs, sea stacks have particular advantages for use as ground-motion constraints: (1) they are frequently tall and thin; (2) they are widely distributed parallel to the coast, proximal to the trench and the likely megathrust rupture surface; and (3) they are formed by sea cliff retreat, meaning that their ages may be coarsely estimated as a function of distance from the coast. About 40% of the surveyed sea stacks appear to have survived multiple Cascadia megathrust earthquakes. Using a quasi-static analysis, we estimate the minimum horizontal ground accelerations that could fracture the rock pillars. We provide context for the quasi-static results by comparing them with predictions from kinematic simulations and ground-motion prediction equations. Among the sea stacks old enough to have survived multiple megathrust earthquakes (n = 16), eight yield breaking accelerations lower than the predictions, although they generally overlap within uncertainty. FGFs with the lowest breaking accelerations are distributed uniformly over 130 km of coastline. Results for inland features, such as speleothems, are in close agreement with the predictions. We conclude that FGFs show promise for investigating both past earthquake shaking and its spatial variability along the coasts of Oregon and Washington, where sea stacks are often prevalent. Future work can refine our understanding of FGF age and evolution.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3