Earthquake Magnitudes from Dynamic Strain

Author:

Barbour Andrew J.1ORCID,Langbein John O.1ORCID,Farghal Noha S.1ORCID

Affiliation:

1. U.S. Geological Survey, Earthquake Science Center, Moffett Field, California, U.S.A.

Abstract

ABSTRACT Dynamic strains have never played a role in determining local earthquake magnitudes, which are routinely set by displacement waveforms from seismic instrumentation (e.g., ML). We present a magnitude scale for local earthquakes based on broadband dynamic strain waveforms. This scale is derived from the peak root-mean-squared strains (A) in 4589 records of dynamic strain associated with 365 crustal earthquakes and 77 borehole strainmeters along the Pacific-North American plate boundary on the west coast of the United States and Canada. In this data set, catalog moment magnitudes range from 3.5≤Mw≤7.2, and hypocentral distances range from 6≤R≤500  km. The 1D representation of geometrical spreading and attenuation of A common to all strain data is logA0(R)=−0.00072R−1.45log(R). After correcting for instrument gain, site terms, and event terms, the magnitude scale, MDS=logA−logA0(R)−log(3×10−9), scales as ≈0.92Mw with a residual standard deviation of 0.19. This close association with Mw holds for events east of the −124° meridian; west of this boundary, however, a constant correction of 0.41 is needed to adjust for additional along-path attenuation effects. As a check on the accuracy of this magnitude scale, we apply it to dynamic strain records from three strainmeters located in the near field of the 2019 M 6.4 and 7.1 Ridgecrest earthquakes. Results from these six records are in agreement to within 0.5 magnitude units, and five out of six records are in agreement to within 0.34 units.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3