The Productivity of Cascadia Aftershock Sequences

Author:

Gomberg Joan12ORCID,Bodin Paul2

Affiliation:

1. U.S. Geological Survey, Seattle, Washington, U.S.A.

2. Department of Earth and Space Sciences, University of Washington, Seattle, Washington, U.S.A.

Abstract

ABSTRACT This study addresses questions about the productivity of Cascadia mainshock–aftershock sequences using earthquake catalogs produced by the Geological Survey of Canada and the Pacific Northwest Seismic Network. Questions concern the likelihood that future moderate to large intermediate depth intraslab earthquakes in Cascadia would have as few detectable aftershocks as those documented since 1949. More broadly, for Cascadia, we consider if aftershock productivities vary spatially, if they are outliers among global subduction zones, and if they are consistent with a physical model in which aftershocks are clock-advanced versions of tectonically driven background seismicity. A practical motivation for this study is to assess the likely accuracy of aftershock forecasts based on productivities derived from global data that are now being issued routinely by the U.S. Geological Survey. For this reason, we estimated productivity following the identical procedures used in those forecasts and described in Page et al. (2016). Results indicate that in Cascadia we can say that the next intermediate depth intraslab earthquake will likely have just a few detectable aftershocks and that aftershock productivity appears to be an outlier among global subduction zones, with rates that on average are lower by more than half, except for mainshocks in the upper plate. Our results are consistent with a clock-advance model; productivities may be related to the proximity of mainshocks to a population of seismogenic fault patches and correlate with background seismicity rates. The latter and a clear correlation between productivities with mainshock depth indicate that both factors may have predictive value for aftershock forecasting.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3