3D Seismic-Wave Modeling with a Topographic Fluid–Solid Interface at the Sea Bottom by the Curvilinear-Grid Finite-Difference Method

Author:

Sun Yao-Chong123ORCID,Zhang Wei123ORCID,Ren Hengxin123ORCID,Bao Xueyang123ORCID,Xu Jian-Kuan123ORCID,Sun Nan24ORCID,Yang Zhentao123ORCID,Chen Xiaofei123ORCID

Affiliation:

1. Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China

2. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China

3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China

4. Yunnan Earthquake Agency, Kunming, Yunnan, China

Abstract

ABSTRACT The curvilinear-grid finite-difference method (FDM), which uses curvilinear coordinates to discretize the nonplanar interface geometry, is extended to simulate acoustic and seismic-wave propagation across the fluid–solid interface at the sea bottom. The coupled acoustic velocity-pressure and elastic velocity-stress formulation that governs wave propagation in seawater and solid earth is expressed in curvilinear coordinates. The formulation is solved on a collocated grid by alternative applications of forward and backward MacCormack finite difference within a fourth-order Runge–Kutta temporal integral scheme. The shape of a fluid–solid interface is discretized by a curvilinear grid to enable a good fit with the topographic interface. This good fit can obtain a higher numerical accuracy than the staircase approximation in the conventional FDM. The challenge is to correctly implement the fluid–solid interface condition, which involves the continuity of tractions and the normal component of the particle velocity, and the discontinuity (slipping) of the tangent component of the particle velocity. The fluid–solid interface condition is derived for curvilinear coordinates and explicitly implemented by a domain-decomposition technique, which splits a grid point on the fluid–solid interface into one grid point for the fluid wavefield and another one for the solid wavefield. Although the conventional FDM that uses effective media parameters near the fluid–solid interface to implicitly approach the boundary condition conflicts with the fluid–solid interface condition. We verify the curvilinear-grid FDM by conducting numerical simulations on several different models and compare the proposed numerical solutions with independent solutions that are calculated by the Luco-Apsel-Chen generalized reflection/transmission method and spectral-element method. Besides, the effects of a nonplanar fluid–solid interface and fluid layer on wavefield propagation are also investigated in a realistic seafloor bottom model. The proposed algorithm is a promising tool for wavefield propagation in heterogeneous media with a nonplanar fluid–solid interface.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3